Internet protocol suite |
---|
Application layer |
Transport layer |
Internet layer |
Link layer |
Network File System (NFS) is a distributed file system protocol originally developed by Sun Microsystems (Sun) in 1984, [1] allowing a user on a client computer to access files over a computer network much like local storage is accessed. NFS, like many other protocols, builds on the Open Network Computing Remote Procedure Call (ONC RPC) system. NFS is an open IETF standard defined in a Request for Comments (RFC), allowing anyone to implement the protocol.
Sun used version 1 only for in-house experimental purposes. When the development team added substantial changes to NFS version 1 and released it outside of Sun, they decided to release the new version as v2, so that version interoperation and RPC version fallback could be tested. [2] [3]
Version 2 of the protocol (defined in RFC 1094, March 1989) originally operated only over User Datagram Protocol (UDP). Its designers meant to keep the server side stateless, with locking (for example) implemented outside of the core protocol. People involved in the creation of NFS version 2 include Russel Sandberg, Bob Lyon, Bill Joy, Steve Kleiman, and others. [1] [4]
The Virtual File System interface allows a modular implementation, reflected in a simple protocol. By February 1986, implementations were demonstrated for operating systems such as System V release 2, DOS, and VAX/VMS using Eunice. [4] NFSv2 only allows the first 2 GB of a file to be read due to 32-bit limitations.
Version 3 (RFC 1813, June 1995) added:
The first NFS Version 3 proposal within Sun Microsystems was created not long after the release of NFS Version 2. The principal motivation was an attempt to mitigate the performance issue of the synchronous write operation in NFS Version 2. [6] By July 1992, implementation practice had solved many shortcomings of NFS Version 2, leaving only lack of large file support (64-bit file sizes and offsets) a pressing issue. At the time of introduction of Version 3, vendor support for TCP as a transport-layer protocol began increasing. While several vendors had already added support for NFS Version 2 with TCP as a transport, Sun Microsystems added support for TCP as a transport for NFS at the same time it added support for Version 3. Using TCP as a transport made using NFS over a WAN more feasible, and allowed the use of larger read and write transfer sizes beyond the 8 KB limit imposed by User Datagram Protocol.
WebNFS was an extension to NFSv2 and NFSv3 allowing it to function behind restrictive firewalls without the complexity of Portmap and MOUNT protocols. WebNFS had a fixed TCP/UDP port number (2049), and instead of requiring the client to contact the MOUNT RPC service to determine the initial filehandle of every filesystem, it introduced the concept of a public filehandle (null for NFSv2, zero-length for NFSv3) which could be used as the starting point. Both of those changes have later been incorporated into NFSv4.
Version 4 (RFC 3010, December 2000; revised in RFC 3530, April 2003 and again in RFC 7530, March 2015), influenced by Andrew File System (AFS) and Server Message Block (SMB), includes performance improvements, mandates strong security, and introduces a stateful protocol. [7] [8] Version 4 became the first version developed with the Internet Engineering Task Force (IETF) after Sun Microsystems handed over the development of the NFS protocols.
NFS version 4.1 (RFC 5661, January 2010; revised in RFC 8881, August 2020) aims to provide protocol support to take advantage of clustered server deployments including the ability to provide scalable parallel access to files distributed among multiple servers (pNFS extension). Version 4.1 includes Session trunking mechanism (Also known as NFS Multipathing) and is available in some enterprise solutions as VMware ESXi.
NFS version 4.2 (RFC 7862) was published in November 2016 [9] with new features including: server-side clone and copy, application I/O advise, sparse files, space reservation, application data block (ADB), labeled NFS with sec_label that accommodates any MAC security system, and two new operations for pNFS (LAYOUTERROR and LAYOUTSTATS).
One big advantage of NFSv4 over its predecessors is that only one UDP or TCP port, 2049, is used to run the service, which simplifies using the protocol across firewalls. [10]
WebNFS, an extension to Version 2 and Version 3, allows NFS to integrate more easily into Web-browsers and to enable operation through firewalls. In 2007 Sun Microsystems open-sourced their client-side WebNFS implementation. [11]
Various side-band protocols have become associated with NFS. Note:
NFS is available on:
During the development of the ONC protocol (called SunRPC at the time), only Apollo's Network Computing System (NCS) offered comparable functionality. Two competing groups developed over fundamental differences in the two remote procedure call systems. Arguments focused on the method for data-encoding — ONC's External Data Representation (XDR) always rendered integers in big-endian order, even if both peers of the connection had little-endian machine-architectures, whereas NCS's method attempted to avoid byte-swap whenever two peers shared a common endianness in their machine-architectures. An industry-group called the Network Computing Forum formed (March 1987) in an (ultimately unsuccessful) attempt to reconcile the two network-computing environments.
In 1987, Sun and AT&T announced they would jointly develop AT&T's UNIX System V Release 4. [24] This caused many of AT&T's other licensees of UNIX System to become concerned that this would put Sun in an advantaged position, and ultimately led to Digital Equipment, HP, IBM, and others forming the Open Software Foundation (OSF) in 1988. Ironically, Sun and AT&T had formerly competed over Sun's NFS versus AT&T's Remote File System (RFS), and the quick adoption of NFS over RFS by Digital Equipment, HP, IBM, and many other computer vendors tipped the majority of users in favor of NFS. NFS interoperability was aided by events called "Connectathons" starting in 1986 that allowed vendor-neutral testing of implementations with each other. [25] OSF adopted the Distributed Computing Environment (DCE) and the DCE Distributed File System (DFS) over Sun/ONC RPC and NFS. DFS used DCE as the RPC, and DFS derived from the Andrew File System (AFS); DCE itself derived from a suite of technologies, including Apollo's NCS and Kerberos.[ citation needed ]
Sun Microsystems and the Internet Society (ISOC) reached an agreement to cede "change control" of ONC RPC so that the ISOC's engineering-standards body, the Internet Engineering Task Force (IETF), could publish standards documents (RFCs) related to ONC RPC protocols and could extend ONC RPC. OSF attempted to make DCE RPC an IETF standard, but ultimately proved unwilling to give up change control. Later, the IETF chose to extend ONC RPC by adding a new authentication flavor based on Generic Security Services Application Program Interface (GSSAPI), RPCSEC GSS, to meet IETF requirements that protocol standards have adequate security.
Later, Sun and ISOC reached a similar agreement to give ISOC change control over NFS, although writing the contract carefully to exclude NFS version 2 and version 3. Instead, ISOC gained the right to add new versions to the NFS protocol, which resulted in IETF specifying NFS version 4 in 2003.
By the 21st century, neither DFS nor AFS had achieved any major commercial success as compared to SMB or NFS. IBM, which had formerly acquired the primary commercial vendor of DFS and AFS, Transarc, donated most of the AFS source code to the free software community in 2000. The OpenAFS project lives on. In early 2005, IBM announced end of sales for AFS and DFS.
In January, 2010, Panasas proposed an NFSv4.1 based on their Parallel NFS (pNFS) technology claiming to improve data-access parallelism [26] capability. The NFSv4.1 protocol defines a method of separating the filesystem meta-data from file data location; it goes beyond the simple name/data separation by striping the data amongst a set of data servers. This differs from the traditional NFS server which holds the names of files and their data under the single umbrella of the server. Some products are multi-node NFS servers, but the participation of the client in separation of meta-data and data is limited.
The NFSv4.1 pNFS server is a set of server resources or components; these are assumed to be controlled by the meta-data server.
The pNFS client still accesses one meta-data server for traversal or interaction with the namespace; when the client moves data to and from the server it may directly interact with the set of data servers belonging to the pNFS server collection. The NFSv4.1 client can be enabled to be a direct participant in the exact location of file data and to avoid solitary interaction with one NFS server when moving data.
In addition to pNFS, NFSv4.1 provides:
In distributed computing, a remote procedure call (RPC) is when a computer program causes a procedure (subroutine) to execute in a different address space, which is written as if it were a normal (local) procedure call, without the programmer explicitly writing the details for the remote interaction. That is, the programmer writes essentially the same code whether the subroutine is local to the executing program, or remote. This is a form of client–server interaction, typically implemented via a request–response message passing system. In the object-oriented programming paradigm, RPCs are represented by remote method invocation (RMI). The RPC model implies a level of location transparency, namely that calling procedures are largely the same whether they are local or remote, but usually, they are not identical, so local calls can be distinguished from remote calls. Remote calls are usually orders of magnitude slower and less reliable than local calls, so distinguishing them is important.
The File Transfer Protocol (FTP) is a standard communication protocol used for the transfer of computer files from a server to a client on a computer network. FTP is built on a client–server model architecture using separate control and data connections between the client and the server. FTP users may authenticate themselves with a plain-text sign-in protocol, normally in the form of a username and password, but can connect anonymously if the server is configured to allow it. For secure transmission that protects the username and password, and encrypts the content, FTP is often secured with SSL/TLS (FTPS) or replaced with SSH File Transfer Protocol (SFTP).
An application layer is an abstraction layer that specifies the shared communication protocols and interface methods used by hosts in a communications network. An application layer abstraction is specified in both the Internet Protocol Suite (TCP/IP) and the OSI model. Although both models use the same term for their respective highest-level layer, the detailed definitions and purposes are different.
In computing, the Windows Sockets API (WSA), later shortened to Winsock, is an application programming interface (API) that defines how Windows network application software should access network services, especially TCP/IP. It defines a standard interface between a Windows TCP/IP client application and the underlying TCP/IP protocol stack. The nomenclature is based on the Berkeley sockets API used in BSD for communications between programs.
Server Message Block (SMB) is a communication protocol used to share files, printers, serial ports, and miscellaneous communications between nodes on a network. On Microsoft Windows, the SMB implementation consists of two vaguely named Windows services: "Server" and "Workstation". It uses NTLM or Kerberos protocols for user authentication. It also provides an authenticated inter-process communication (IPC) mechanism.
External Data Representation (XDR) is a standard data serialization format, for uses such as computer network protocols. It allows data to be transferred between different kinds of computer systems. Converting from the local representation to XDR is called encoding. Converting from XDR to the local representation is called decoding. XDR is implemented as a software library of functions which is portable between different operating systems and is also independent of the transport layer.
The Andrew File System (AFS) is a distributed file system which uses a set of trusted servers to present a homogeneous, location-transparent file name space to all the client workstations. It was developed by Carnegie Mellon University as part of the Andrew Project. Originally named "Vice", "Andrew" refers to Andrew Carnegie and Andrew Mellon. Its primary use is in distributed computing.
The Distributed Computing Environment (DCE) is a software system developed in the early 1990s from the work of the Open Software Foundation (OSF), a consortium founded in 1988 that included Apollo Computer, IBM, Digital Equipment Corporation, and others. The DCE supplies a framework and a toolkit for developing client/server applications. The framework includes:
Open Network Computing (ONC) Remote Procedure Call (RPC), commonly known as Sun RPC is a remote procedure call system. ONC was originally developed by Sun Microsystems in the 1980s as part of their Network File System project.
The port mapper is an Open Network Computing Remote Procedure Call service that runs on network nodes that provide other ONC RPC services.
NIS+ is a directory service developed by Sun Microsystems to replace its older 'NIS'. It is designed to eliminate the need for duplication across many computers of configuration data such as user accounts, host names and addresses, printer information and NFS disk mounts on individual systems, instead using a central repository on a master server, simplifying system administration. NIS+ client software has been ported to other Unix and Unix-like platforms.
Distributed File System (DFS) is a set of client and server services that allow an organization using Microsoft Windows servers to organize many distributed SMB file shares into a distributed file system. DFS has two components to its service: Location transparency and Redundancy. Together, these components enable data availability in the case of failure or heavy load by allowing shares in multiple different locations to be logically grouped under one folder, the "DFS root".
In computing, a fileset is a set of computer files linked by defining property or common characteristic. There are different types of fileset though the context will usually give the defining characteristic. Sometimes it is necessary to explicitly state the fileset type to avoid ambiguity, an example is the emacs editor which explicitly mentions its Version Control (VC) fileset type to distinguish from its "named files" fileset type.
The DCE Distributed File System (DCE/DFS) is the remote file access protocol used with the Distributed Computing Environment. It was a variant of Andrew File System (AFS), based on the AFS Version 3.0 protocol that was developed commercially by Transarc Corporation. AFS Version 3.0 was in turn based on the AFS Version 2.0 protocol originally developed at Carnegie Mellon University.
CacheFS is a family of software technologies designed to speed up distributed file system file access for networked computers. They store copies (caches) of files on secondary memory, typically a local hard disk, so that if a file is accessed again, it can be fetched locally at much higher speeds than networks typically allow.
A clustered file system (CFS) is a file system which is shared by being simultaneously mounted on multiple servers. There are several approaches to clustering, most of which do not employ a clustered file system. Clustered file systems can provide features like location-independent addressing and redundancy which improve reliability or reduce the complexity of the other parts of the cluster. Parallel file systems are a type of clustered file system that spread data across multiple storage nodes, usually for redundancy or performance.
WebNFS is an extension to the Network File System (NFS) for allowing clients to access a file system over the internet using a simplified, firewall-friendly protocol.
ISO/IEC 17826Information technology — Cloud Data Management Interface (CDMI) Version 2.0.0 is an international standard that specifies a protocol for self-provisioning, administering and managing access to data stored in cloud storage, object storage, storage area network and network attached storage systems. The CDMI standard is developed and maintained by the Storage Networking Industry Association, who makes a publicly accessible version of the specification available.
NFS-Ganesha is an NFS server that runs in user space and supports the CephFS FSAL (File System Abstraction Layer) using libcephfs.