Network File System

Last updated

Network File System (NFS) is a distributed file system protocol originally developed by Sun Microsystems (Sun) in 1984, [1] allowing a user on a client computer to access files over a computer network much like local storage is accessed. NFS, like many other protocols, builds on the Open Network Computing Remote Procedure Call (ONC RPC) system. NFS is an open IETF standard defined in a Request for Comments (RFC), allowing anyone to implement the protocol.

Contents

Versions and variations

Sun used version 1 only for in-house experimental purposes. When the development team added substantial changes to NFS version 1 and released it outside of Sun, they decided to release the new version as v2, so that version interoperation and RPC version fallback could be tested. [2] [3]

NFSv2

Version 2 of the protocol (defined in RFC 1094, March 1989) originally operated only over User Datagram Protocol (UDP). Its designers meant to keep the server side stateless, with locking (for example) implemented outside of the core protocol. People involved in the creation of NFS version 2 include Russel Sandberg, Bob Lyon, Bill Joy, Steve Kleiman, and others. [1] [4]

The Virtual File System interface allows a modular implementation, reflected in a simple protocol. By February 1986, implementations were demonstrated for operating systems such as System V release 2, DOS, and VAX/VMS using Eunice. [4] NFSv2 only allows the first 2 GB of a file to be read due to 32-bit limitations.

NFSv3

Version 3 (RFC 1813, June 1995) added:

The first NFS Version 3 proposal within Sun Microsystems was created not long after the release of NFS Version 2. The principal motivation was an attempt to mitigate the performance issue of the synchronous write operation in NFS Version 2. [6] By July 1992, implementation practice had solved many shortcomings of NFS Version 2, leaving only lack of large file support (64-bit file sizes and offsets) a pressing issue. This became an acute pain point for Digital Equipment Corporation with the introduction of a 64-bit version of Ultrix to support their newly released 64-bit RISC processor, the Alpha 21064. At the time of introduction of Version 3, vendor support for TCP as a transport-layer protocol began increasing. While several vendors had already added support for NFS Version 2 with TCP as a transport, Sun Microsystems added support for TCP as a transport for NFS at the same time it added support for Version 3. Using TCP as a transport made using NFS over a WAN more feasible, and allowed the use of larger read and write transfer sizes beyond the 8 KB limit imposed by User Datagram Protocol.

WebNFS

WebNFS was an extension to NFSv2 and NFSv3 allowing it to function behind restrictive firewalls without the complexity of Portmap and MOUNT protocols. WebNFS had a fixed TCP/UDP port number (2049), and instead of requiring the client to contact the MOUNT RPC service to determine the initial filehandle of every filesystem, it introduced the concept of a public filehandle (null for NFSv2, zero-length for NFSv3) which could be used as the starting point. Both of those changes have later been incorporated into NFSv4.

NFSv4

Version 4 (RFC 3010, December 2000; revised in RFC 3530, April 2003 and again in RFC 7530, March 2015), influenced by Andrew File System (AFS) and Server Message Block (SMB, also termed CIFS), includes performance improvements, mandates strong security, and introduces a stateful protocol. [7] [8] Version 4 became the first version developed with the Internet Engineering Task Force (IETF) after Sun Microsystems handed over the development of the NFS protocols.

NFS version 4.1 (RFC 5661, January 2010; revised in RFC 8881, August 2020) aims to provide protocol support to take advantage of clustered server deployments including the ability to provide scalable parallel access to files distributed among multiple servers (pNFS extension). Version 4.1 includes Session trunking mechanism (Also known as NFS Multipathing) and available in some enterprise solutions as VMware ESXi.

NFS version 4.2 (RFC 7862) was published in November 2016 [9] with new features including: server-side clone and copy, application I/O advise, sparse files, space reservation, application data block (ADB), labeled NFS with sec_label that accommodates any MAC security system, and two new operations for pNFS (LAYOUTERROR and LAYOUTSTATS).

One big advantage of NFSv4 over its predecessors is that only one UDP or TCP port, 2049, is used to run the service, which simplifies using the protocol across firewalls.

Other extensions

WebNFS, an extension to Version 2 and Version 3, allows NFS to integrate more easily into Web-browsers and to enable operation through firewalls. In 2007 Sun Microsystems open-sourced their client-side WebNFS implementation. [10]

Various side-band protocols have become associated with NFS. Note:

Platforms

NFS is often used with Unix operating systems (such as Solaris, AIX, HP-UX), Apple's macOS, and Unix-like operating systems (such as Linux and FreeBSD). It is also available to operating systems such as Acorn RISC OS, [15] AmigaOS, the classic Mac OS, OpenVMS, [3] MS-DOS, [16] Microsoft Windows, [17] OS/2, [18] ArcaOS, [19] Novell NetWare, [20] and IBM i. [21] Alternative remote file access protocols include the Server Message Block (SMB, also termed CIFS), Apple Filing Protocol (AFP), NetWare Core Protocol (NCP), and OS/400 File Server file system (QFileSvr.400).

SMB and NetWare Core Protocol (NCP) occur more often than NFS on systems running Microsoft Windows; AFP occurs more often than NFS in Apple Macintosh systems; and QFileSvr.400 occurs more often in IBM i systems. Haiku in 2012 added NFSv4 support as part of a Google Summer of Code project.

NFS SPECsfs2008 performance comparison, as of 22 November 2013 NfsPerformanceGraph.png
NFS SPECsfs2008 performance comparison, as of 22 November 2013

Typical implementation

Assuming a Unix-style scenario in which one machine (the client) needs access to data stored on another machine (the NFS server):

  1. The server implements NFS daemon processes, running by default as nfsd, to make its data generically available to clients.
  2. The server administrator determines what to make available, exporting the names and parameters of directories, typically using the /etc/exports configuration file and the exportfs command.
  3. The server security-administration ensures that it can recognize and approve validated clients.
  4. The server network configuration ensures that appropriate clients can negotiate with it through any firewall system.
  5. The client machine requests access to exported data, typically by issuing a mount command. (The client asks the server (rpcbind) which port the NFS server is using, the client connects to the NFS server (nfsd), nfsd passes the request to mountd)
  6. If all goes well, users on the client machine can then view and interact with mounted filesystems on the server within the parameters permitted.

Note that automation of the NFS mounting process may take place — perhaps using /etc/fstab and/or automounting facilities.

Protocol development

During the development of the ONC protocol (called SunRPC at the time), only Apollo's Network Computing System (NCS) offered comparable functionality. Two competing groups developed over fundamental differences in the two remote procedure call systems. Arguments focused on the method for data-encoding — ONC's External Data Representation (XDR) always rendered integers in big-endian order, even if both peers of the connection had little-endian machine-architectures, whereas NCS's method attempted to avoid byte-swap whenever two peers shared a common endianness in their machine-architectures. An industry-group called the Network Computing Forum formed (March 1987) in an (ultimately unsuccessful) attempt to reconcile the two network-computing environments.

In 1987, Sun and AT&T announced they would jointly develop AT&T's UNIX System V Release 4. [22] This caused many of AT&T's other licensees of UNIX System to become concerned that this would put Sun in an advantaged position, and ultimately led to Digital Equipment, HP, IBM, and others forming the Open Software Foundation (OSF) in 1988. Ironically, Sun and AT&T had formerly competed over Sun's NFS versus AT&T's Remote File System (RFS), and the quick adoption of NFS over RFS by Digital Equipment, HP, IBM, and many other computer vendors tipped the majority of users in favor of NFS. NFS interoperability was aided by events called "Connectathons" starting in 1986 that allowed vendor-neutral testing of implementations with each other. [23] OSF adopted the Distributed Computing Environment (DCE) and the DCE Distributed File System (DFS) over Sun/ONC RPC and NFS. DFS used DCE as the RPC, and DFS derived from the Andrew File System (AFS); DCE itself derived from a suite of technologies, including Apollo's NCS and Kerberos.[ citation needed ]

1990s

Sun Microsystems and the Internet Society (ISOC) reached an agreement to cede "change control" of ONC RPC so that the ISOC's engineering-standards body, the Internet Engineering Task Force (IETF), could publish standards documents (RFCs) related to ONC RPC protocols and could extend ONC RPC. OSF attempted to make DCE RPC an IETF standard, but ultimately proved unwilling to give up change control. Later, the IETF chose to extend ONC RPC by adding a new authentication flavor based on Generic Security Services Application Program Interface (GSSAPI), RPCSEC GSS, to meet IETF requirements that protocol standards have adequate security.

Later, Sun and ISOC reached a similar agreement to give ISOC change control over NFS, although writing the contract carefully to exclude NFS version 2 and version 3. Instead, ISOC gained the right to add new versions to the NFS protocol, which resulted in IETF specifying NFS version 4 in 2003.

2000s

By the 21st century, neither DFS nor AFS had achieved any major commercial success as compared to SMB-CIFS or NFS. IBM, which had formerly acquired the primary commercial vendor of DFS and AFS, Transarc, donated most of the AFS source code to the free software community in 2000. The OpenAFS project lives on. In early 2005, IBM announced end of sales for AFS and DFS.

In January, 2010, Panasas proposed an NFSv4.1 based on their Parallel NFS (pNFS) technology claiming to improve data-access parallelism [24] capability. The NFSv4.1 protocol defines a method of separating the filesystem meta-data from file data location; it goes beyond the simple name/data separation by striping the data amongst a set of data servers. This differs from the traditional NFS server which holds the names of files and their data under the single umbrella of the server. Some products are multi-node NFS servers, but the participation of the client in separation of meta-data and data is limited.

The NFSv4.1 pNFS server is a set of server resources or components; these are assumed to be controlled by the meta-data server.

The pNFS client still accesses one meta-data server for traversal or interaction with the namespace; when the client moves data to and from the server it may directly interact with the set of data servers belonging to the pNFS server collection. The NFSv4.1 client can be enabled to be a direct participant in the exact location of file data and to avoid solitary interaction with one NFS server when moving data.

In addition to pNFS, NFSv4.1 provides:

See also

Related Research Articles

In distributed computing, a Remote Procedure Call (RPC) is when a computer program causes a procedure (subroutine) to execute in a different address space, which is written as if it were a normal (local) procedure call, without the programmer explicitly writing the details for the remote interaction. That is, the programmer writes essentially the same code whether the subroutine is local to the executing program, or remote. This is a form of client–server interaction, typically implemented via a request–response message passing system. In the object-oriented programming paradigm, RPCs are represented by remote method invocation (RMI). The RPC model implies a level of location transparency, namely that calling procedures are largely the same whether they are local or remote, but usually, they are not identical, so local calls can be distinguished from remote calls. Remote calls are usually orders of magnitude slower and less reliable than local calls, so distinguishing them is important.

The Secure Shell Protocol (SSH) is a cryptographic network protocol for operating network services securely over an unsecured network. Its most notable applications are remote login and command-line execution.

Telnet is a client/server application protocol that provides access to virtual terminals of remote systems on local area networks or the Internet. It is a protocol for bidirectional 8-bit communications. Its main goal was to connect terminal devices and terminal-oriented processes.

The File Transfer Protocol (FTP) is a standard communication protocol used for the transfer of computer files from a server to a client on a computer network. FTP is built on a client–server model architecture using separate control and data connections between the client and the server. FTP users may authenticate themselves with a plain-text sign-in protocol, normally in the form of a username and password, but can connect anonymously if the server is configured to allow it. For secure transmission that protects the username and password, and encrypts the content, FTP is often secured with SSL/TLS (FTPS) or replaced with SSH File Transfer Protocol (SFTP).

In computer security, an access-control list (ACL) is a list of permissions associated with a system resource. An ACL specifies which users or system processes are granted access to resources, as well as what operations are allowed on given resources. Each entry in a typical ACL specifies a subject and an operation. For instance,

An application layer is an abstraction layer that specifies the shared communication protocols and interface methods used by hosts in a communications network. An application layer abstraction is specified in both the Internet Protocol Suite (TCP/IP) and the OSI model. Although both models use the same term for their respective highest-level layer, the detailed definitions and purposes are different.

In computing, the Windows Sockets API (WSA), later shortened to Winsock, is an application programming interface (API) that defines how Windows network application software should access network services, especially TCP/IP. It defines a standard interface between a Windows TCP/IP client application and the underlying TCP/IP protocol stack. The nomenclature is based on the Berkeley sockets API used in BSD for communications between programs.

<span class="mw-page-title-main">Server Message Block</span> Network communication protocol for providing shared access to resources

Server Message Block (SMB) is a communication protocol used to share files, printers, serial ports, and miscellaneous communications between nodes on a network. On Microsoft Windows, the SMB implementation consists of two vaguely named Windows services: "Server" and "Workstation". It uses NTLM or Kerberos protocols for user authentication. It also provides an authenticated inter-process communication (IPC) mechanism.

The Andrew File System (AFS) is a distributed file system which uses a set of trusted servers to present a homogeneous, location-transparent file name space to all the client workstations. It was developed by Carnegie Mellon University as part of the Andrew Project. Originally named "Vice", "Andrew" refers to Andrew Carnegie and Andrew Mellon. Its primary use is in distributed computing.

<span class="mw-page-title-main">Network-attached storage</span> Computer data storage server

Network-attached storage (NAS) is a file-level computer data storage server connected to a computer network providing data access to a heterogeneous group of clients. The term "NAS" can refer to both the technology and systems involved, or a specialized device built for such functionality.

The Distributed Computing Environment (DCE) is a software system developed in the early 1990s from the work of the Open Software Foundation (OSF), a consortium founded in 1988 that included Apollo Computer, IBM, Digital Equipment Corporation, and others. The DCE supplies a framework and a toolkit for developing client/server applications. The framework includes:

Open Network Computing (ONC) Remote Procedure Call (RPC), commonly known as Sun RPC is a remote procedure call system. ONC was originally developed by Sun Microsystems in the 1980s as part of their Network File System project.

The port mapper is an Open Network Computing Remote Procedure Call service that runs on network nodes that provide other ONC RPC services.

NIS+ is a directory service developed by Sun Microsystems to replace its older 'NIS'. It is designed to eliminate the need for duplication across many computers of configuration data such as user accounts, host names and addresses, printer information and NFS disk mounts on individual systems, instead using a central repository on a master server, simplifying system administration. NIS+ client software has been ported to other Unix and Unix-like platforms.

In computing, a fileset is a set of computer files linked by defining property or common characteristic. There are different types of fileset though the context will usually give the defining characteristic. Sometimes it is necessary to explicitly state the fileset type to avoid ambiguity, an example is the emacs editor which explicitly mentions its Version Control (VC) fileset type to distinguish from its "named files" fileset type.

CacheFS is a family of software technologies designed to speed up distributed file system file access for networked computers. They store copies (caches) of files on secondary memory, typically a local hard disk, so that if a file is accessed again, it can be fetched locally at much higher speeds than networks typically allow.

A clustered file system (CFS) is a file system which is shared by being simultaneously mounted on multiple servers. There are several approaches to clustering, most of which do not employ a clustered file system. Clustered file systems can provide features like location-independent addressing and redundancy which improve reliability or reduce the complexity of the other parts of the cluster. Parallel file systems are a type of clustered file system that spread data across multiple storage nodes, usually for redundancy or performance.

WebNFS is an extension to the Network File System (NFS) for allowing clients to access a file system over the internet using a simplified, firewall-friendly protocol.

References

  1. 1 2 Russel Sandberg; David Goldberg; Steve Kleiman; Dan Walsh; Bob Lyon (1985). "Design and Implementation of the Sun Network Filesystem". CiteSeerX   10.1.1.14.473 .
  2. NFS Illustrated (2000) by Brent Callaghan – ISBN   0-201-32570-5
  3. 1 2 "HP TCP/IP Services for OpenVMS Management". h41379.www4.hpe.com. HP. Retrieved 24 September 2016.
  4. 1 2 Russel Sandberg. "The Sun Network Filesystem: Design, Implementation and Experience" (PDF). Technical Report. Sun Microsystems.
  5. Arpaci-Dusseau, Remzi; Arpaci-Dusseau, Andrea (March 2015). Operating Systems: Three Easy Pieces (PDF) (.9 ed.). Arpaci-Dusseau Books. p. 5. Retrieved 8 November 2017.
  6. Brian Pawlowski; Chet Juszczak; Peter Staubach; Carl Smith; Diane Lebel; David Hitz (1994). "NFS Version 3 Design and Implementation". USENIX.
  7. "NFS Version 4". USENIX. 2005-04-14.
  8. Brian Pawlowski; Spencer Shepler; Carl Beame; Brent Callaghan; Michael Eisler; David Noveck; David Robinson; Robert Thurlow (2000). "The NFS Version 4 Protocol" (PDF). SANE.
  9. Haynes, Thomas (2016-11-01). NFS Version 4 Minor Version 2. doi: 10.17487/RFC7862 .
  10. yanfs.dev.java.net [ permanent dead link ]
  11. Tom Talpey (February 28, 2006). "NFS/RDMA Implementation(s) Update" (PDF). Network Appliance, Inc. Archived from the original (PDF) on May 12, 2011.
  12. Brent Callaghan (January 28, 2002). "NFS over RDMA" (PDF). Sun Microsystems.
  13. Singh, Karan (2016). "4: Working with the Ceph Filesystem". Ceph Cookbook. Birmingham: Packt Publishing Ltd. p. 110. ISBN   978-1-78439-736-4 . Retrieved 2017-03-21. NFS-Ganesha is an NFS server that runs in user space and supports the CephFS FSAL (File System Abstraction Layer) using libcephfs.
  14. Glover <fglover@zk3.dec.com>, Fred. "A Specification of Trusted NFS (TNFS) Protocol Extensions". Ietf Datatracker.{{cite news}}: CS1 maint: numeric names: authors list (link)
  15. "Networking related programs".
  16. "Other Software by SUN Microsystems". www.computinghistory.org.uk. The Centre for Computing History. Retrieved 24 September 2016.
  17. "Introduction to Microsoft Windows Services for UNIX 3.5". technet.microsoft.com. Microsoft. 5 December 2007. Retrieved 24 September 2016.
  18. "NTFS plugin for NetDrive". ecsoft2.org. Retrieved 2020-09-22.
  19. "NetDrive for OS/2". arcanoae.com. Retrieved 2020-09-22.
  20. "NFS Gateway for NetWare 6.5". www.novell.com. Novell. Retrieved 24 September 2016.
  21. "OS/400 Network File System Support" (PDF). publib.boulder.ibm.com. IBM. Retrieved 24 September 2016.[ permanent dead link ]
  22. Carole Patton (1987-10-26). "AT&T to License Sun Microsystems' SPARC Chip". InfoWorld . p. 37. Retrieved 2019-07-16.
  23. "What is Connectathon?". Original Connectathon.Org web site. Archived from the original on January 28, 1999.
  24. "pNFS". Panasas . Retrieved August 4, 2013.