In nuclear physics, resonance escape probability is the probability that a neutron will slow down from fission energy to thermal energies without being captured by a nuclear resonance. A resonance absorption of a neutron in a nucleus does not produce nuclear fission. The probability of resonance absorption is called the resonance factor, and the sum of the two factors is . [1]
Generally, the higher the neutron energy, the lower the probability of absorption, but for some energies, called resonance energies, the resonance factor is very high. These energies depend on the properties of heavy nuclei. Resonance escape probability is highly determined by the heterogeneous geometry of a reactor, because fast neutrons resulting from fission can leave the fuel and slow to thermal energies in a moderator, skipping over resonance energies before reentering the fuel. [1]
Resonance escape probability appears in the four factor formula and the six factor formula. To compute it, neutron transport theory is used.
The nucleus can capture a neutron only if the kinetic energy of the neutron is close to the energy of one of the energy levels of the new nucleus formed as a result of capture. The capture cross section of such a neutron by the nucleus increases sharply. The energy at which the neutron-nucleus interaction cross section reaches a maximum is called the resonance energy. The resonance energy range is divided into two parts, the region of resolved and unresolved resonances. The first region occupies the energy interval from 1 eV to Egr. In this region, the energy resolution of the instruments is sufficient to distinguish any resonance peak. Starting from the energy Egr, the distance between resonance peaks becomes smaller than the energy resolution. Subsequently, the resonance peaks are not separated. For heavy elements, the boundary energy Egr≈1 keV. In thermal neutron reactors, the main resonant neutron absorber is Uranium-238. In the table for 238U, several resonance neutron energies Er, the maximum absorption cross sections σa, r in the peak, and the width G of these resonances are given.
Er, eV | σa, r, barn | G, meV |
---|---|---|
6,68 | 22030 | 26,3 |
21,0 | 33080 | 34,0 |
36,8 | 39820 | 59,0 |
66,3 | 21190 | 43,0 |
Let us assume that the resonant neutrons move in an infinite system consisting of a moderator and 238U. When colliding with the moderator nuclei, the neutrons are scattered, and with the 238U nuclei, they are absorbed. The former collisions favor the retention and removal of resonant neutrons from the danger zone, while the latter lead to their loss.
The probability of avoiding resonance capture (coefficient φ) is related to the density of nuclei NS and the moderating power of the medium ξΣS by the relationship below,
The JeFF value is called the effective resonance integral. It characterizes the absorption of neutrons by a single nucleus in the resonance region and is measured in barnes. The use of the effective resonance integral simplifies quantitative calculations of resonance absorption without detailed consideration of neutron interaction at deceleration. The effective resonance integral is usually determined experimentally. It depends on the concentration of 238U and the mutual arrangement of uranium and the moderator.
In a homogeneous mixture of moderator and 238U, the effective resonance integral is found with a good accuracy by the empirical formula below,
where N3/N8 is the ratio of moderator and 238U nuclei in the homogeneous mixture, σ3S is the microscopic scattering cross section of the moderator. As can be seen from the formula, the effective resonance integral decreases with increasing 238U concentration. The more 238U nuclei in the mixture, the less likely absorption by a single nucleus of the moderating neutrons will take place. The effect of absorption in some 238U nuclei on absorption in others is called resonance level shielding. It increases with increasing concentration of resonance absorbers.
As an example, we can calculate the effective resonance integral in a homogeneous natural uranium-graphite mixture with the ratio N3/N8=215. The scattering cross section of graphite σCS=4.7 barns;
In a homogeneous environment, all 238U nuclei are in the same conditions with respect to the resonant neutron flux. In a heterogeneous environment uranium is separated from the moderator, which significantly affects the resonant neutron absorption. Firstly, some of the resonant neutrons become thermal neutrons in the moderator without colliding with uranium nuclei; secondly, resonant neutrons hitting the surface of the fuel elements are almost all absorbed by the thin surface layer. The inner 238U nuclei are shielded by the surface nuclei and participate less in the resonant neutron absorption, and the shielding increases with the increase of the fuel element diameter d. Therefore, the effective 238U resonance integral in a heterogeneous reactor depends on the fuel element diameter d:
The constant a characterizes the absorption of resonance neutrons by surface and the constant b - by inner 238U nuclei. For each type of nuclear fuel (natural uranium, uranium dioxide, etc.) the constants a and b are measured experimentally. For natural uranium rods a=4.15, b=12.35.
U for a rod from natural uranium with diameter d=3 cm:
Comparison of the last two examples shows that the separation of uranium and moderator noticeably decreases neutron absorption in the resonance region.
Coefficient φ is dependent on the following;
Which reflects the competition of two processes in the resonance region: absorption of neutrons and their deceleration. The cross section Σ, by definition, is analogous to the macroscopic absorption cross section with replacement of the microscopic cross section by the effective resonance integral JeFF. It also characterizes the loss of slowing neutrons in the resonance region. As the 238U concentration increases, the absorption of resonant neutrons increases and hence fewer neutrons are slowed down to thermal energies. The resonance absorption is influenced by the slowing down of neutrons. Collisions with the moderator nuclei take neutrons out of the resonance region and are more intense the greater the moderating power . So, for the same concentration of 238U, the probability of avoiding resonance capture in the uranium-water medium is greater than in the uranium-carbon medium.
Let us calculate the probability of avoiding resonance capture in homogeneous and heterogeneous environments natural uranium-graphite. In both media the ratio of carbon and 238U nuclei NC/NS=215. The diameter of the uranium rod is d=3 cm. Taking into account that ξC=0.159, σCa=4.7 barn, we calculate the following probability;
Calculating the coefficients φ in homogeneous and heterogeneous mixtures, we get;
The transition from homogeneous to heterogeneous medium slightly reduces the thermal neutron absorption in uranium. However, this loss is considerably overlapped by the decrease of the resonance neutron absorption, and the propagation properties of the medium improve.
In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.
In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of these reactions. The specific nuclear reaction may be the fission of heavy isotopes. A nuclear chain reaction releases several million times more energy per reaction than any chemical reaction.
In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.
In nuclear engineering, a critical mass is the smallest amount of fissile material needed for a sustained nuclear chain reaction. The critical mass of a fissionable material depends upon its nuclear properties, density, shape, enrichment, purity, temperature, and surroundings. The concept is important in nuclear weapon design.
In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely more susceptible than fast neutrons to propagate a nuclear chain reaction of uranium-235 or other fissile isotope by colliding with their atomic nucleus.
In particle physics, Fermi's interaction is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interacting with one another. This interaction explains beta decay of a neutron by direct coupling of a neutron with an electron, a neutrino and a proton.
In probability theory and statistics, the generalized extreme value (GEV) distribution is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the only possible limit distribution of properly normalized maxima of a sequence of independent and identically distributed random variables. Note that a limit distribution needs to exist, which requires regularity conditions on the tail of the distribution. Despite this, the GEV distribution is often used as an approximation to model the maxima of long (finite) sequences of random variables.
Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spins excited are those of the electrons instead of the atomic nuclei. EPR spectroscopy is particularly useful for studying metal complexes and organic radicals. EPR was first observed in Kazan State University by Soviet physicist Yevgeny Zavoisky in 1944, and was developed independently at the same time by Brebis Bleaney at the University of Oxford.
The nuclear cross section of a nucleus is used to describe the probability that a nuclear reaction will occur. The concept of a nuclear cross section can be quantified physically in terms of "characteristic area" where a larger area means a larger probability of interaction. The standard unit for measuring a nuclear cross section is the barn, which is equal to 10−28 m2, 10−24 cm2 or 100 fm2. Cross sections can be measured for all possible interaction processes together, in which case they are called total cross sections, or for specific processes, distinguishing elastic scattering and inelastic scattering; of the latter, amongst neutron cross sections the absorption cross sections are of particular interest.
In nuclear physics, the concept of a neutron cross section is used to express the likelihood of interaction between an incident neutron and a target nucleus. The neutron cross section σ can be defined as the area in cm2 for which the number of neutron-nuclei reactions taking place is equal to the product of the number of incident neutrons that would pass through the area and the number of target nuclei. In conjunction with the neutron flux, it enables the calculation of the reaction rate, for example to derive the thermal power of a nuclear power plant. The standard unit for measuring the cross section is the barn, which is equal to 10−28 m2 or 10−24 cm2. The larger the neutron cross section, the more likely a neutron will react with the nucleus.
Nuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a controlled rate of fission in a nuclear reactor for the production of energy. Most nuclear reactors use a chain reaction to induce a controlled rate of nuclear fission in fissile material, releasing both energy and free neutrons. A reactor consists of an assembly of nuclear fuel, usually surrounded by a neutron moderator such as regular water, heavy water, graphite, or zirconium hydride, and fitted with mechanisms such as control rods which control the rate of the reaction.
Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.
In financial mathematics, tail value at risk (TVaR), also known as tail conditional expectation (TCE) or conditional tail expectation (CTE), is a risk measure associated with the more general value at risk. It quantifies the expected value of the loss given that an event outside a given probability level has occurred.
The four-factor formula, also known as Fermi's four factor formula is used in nuclear engineering to determine the multiplication of a nuclear chain reaction in an infinite medium.
In probability theory and statistics, the skew normal distribution is a continuous probability distribution that generalises the normal distribution to allow for non-zero skewness.
Geometric buckling is a measure of neutron leakage and material buckling is a measure of the difference between neutron production and neutron absorption. When nuclear fission occurs inside of a nuclear reactor, neutrons are produced. These neutrons then, to state it simply, either react with the fuel in the reactor or escape from the reactor. These two processes are referred to as neutron absorption and neutron leakage, and their sum is the neutron loss. When the rate of neutron production is equal to the rate of neutron loss, the reactor is able to sustain a chain reaction of nuclear fissions and is considered a critical reactor.
The six-factor formula is used in nuclear engineering to determine the multiplication of a nuclear chain reaction in a non-infinite medium.
A pressurized heavy-water reactor (PHWR) is a nuclear reactor that uses heavy water (deuterium oxide D2O) as its coolant and neutron moderator. PHWRs frequently use natural uranium as fuel, but sometimes also use very low enriched uranium. The heavy water coolant is kept under pressure to avoid boiling, allowing it to reach higher temperature (mostly) without forming steam bubbles, exactly as for a pressurized water reactor (PWR). While heavy water is very expensive to isolate from ordinary water (often referred to as light water in contrast to heavy water), its low absorption of neutrons greatly increases the neutron economy of the reactor, avoiding the need for enriched fuel. The high cost of the heavy water is offset by the lowered cost of using natural uranium and/or alternative fuel cycles. As of the beginning of 2001, 31 PHWRs were in operation, having a total capacity of 16.5 GW(e), representing roughly 7.76% by number and 4.7% by generating capacity of all current operating reactors.
Classical nucleation theory (CNT) is the most common theoretical model used to quantitatively study the kinetics of nucleation.
In physics and mathematics, the Klein–Kramers equation or sometimes referred as Kramers–Chandrasekhar equation is a partial differential equation that describes the probability density function f of a Brownian particle in phase space (r, p). It is a special case of the Fokker–Planck equation.