Response coefficient (biochemistry)

Last updated

Control coefficients measure the response of a biochemical pathway to changes in enzyme activity. The response coefficient, as originally defined by Kacser and Burns, [1] is a measure of how external factors such as inhibitors, pharmaceutical drugs, or boundary species affect the steady-state fluxes and species concentrations. The flux response coefficient is defined by:

Contents

where is the steady-state pathway flux. Similarly, the concentration response coefficient is defined by the expression:

where in both cases is the concentration of the external factor. The response coefficient measures how sensitive a pathway is to changes in external factors other than enzyme activities.

The flux response coefficient is related to control coefficients and elasticities through the following relationship:

Likewise, the concentration response coefficient is related by the following expression:

The summation in both cases accounts for cases where a given external factor, , can act at multiple sites. For example, a given drug might act on multiple protein sites. The overall response is the sum of the individual responses.

These results show that the action of an external factor, such as a drug, has two components:

  1. The elasticity indicates how potent the drug is at affecting the activity of the target site itself.
  2. The control coefficient indicates how any perturbation at the target site will propagate to the rest of the system and thereby affect the phenotype.

When designing drugs for therapeutic action, both aspects must therefore be considered. [2]

Proof of Response Theorem

There are various ways to prove the response theorems:

Proof by perturbation

The perturbation proof by Kacser and Burns [1] is given as follows.

Given the simple linear pathway catalyzed by two enzymes and :

where is the fixed boundary species. Let us increase the concentration of enzyme by an amount . This will cause the steady state flux and concentration of , and all downstream species beyond to increase. The concentration of is now decreased such that the flux and steady-state concentration of is restored back to their original values. These changes allow one to write down the following local and systems equations for the changes that occurred:

There is no term in either equation because the concentration of is unchanged. Both right-hand sides of the equations are guaranteed to be zero by construction. The term can be eliminated by combining both equations. If we also assume that the reaction rate for an enzyme-catalyzed reaction is proportional to the enzyme concentration, then , therefore:

Since

this yields:

.

This proof can be generalized to the case where may act at multiple sites.

Pure algebraic proof

The pure algebraic proof is more complex [3] [4] and requires consideration of the system equation:

where is the stoichiometry matrix and the rate vector. In this derivation, we assume there are no conserved moieties in the network, but this doesn't invalidate the proof. Using the chain rule and differentiating with respect to yields, after rearrangement:

The inverted term is the unscaled control coefficient so that after scaling, it is possible to write:

To derive the flux response coefficient theorem, we must use the additional equation:

See also

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, modelling the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

<span class="mw-page-title-main">Gauss's law</span> Foundational law of electromagnetism relating electric field and charge distributions

In physics, Gauss's law, also known as Gauss's flux theorem, is one of Maxwell's equations. It is an application of the divergence theorem, and it relates the distribution of electric charge to the resulting electric field.

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems published by mathematician Emmy Noether in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.

The calculus of variations is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

<span class="mw-page-title-main">Hooke's law</span> Physical law: force needed to deform a spring scales linearly with distance

In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

Vapnik–Chervonenkis theory was developed during 1960–1990 by Vladimir Vapnik and Alexey Chervonenkis. The theory is a form of computational learning theory, which attempts to explain the learning process from a statistical point of view.

<span class="mw-page-title-main">Granular material</span> Conglomeration of discrete solid, macroscopic particles

A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact. The constituents that compose granular material are large enough such that they are not subject to thermal motion fluctuations. Thus, the lower size limit for grains in granular material is about 1 μm. On the upper size limit, the physics of granular materials may be applied to ice floes where the individual grains are icebergs and to asteroid belts of the Solar System with individual grains being asteroids.

In physics and engineering, a constitutive equation or constitutive relation is a relation between two or more physical quantities that is specific to a material or substance or field, and approximates its response to external stimuli, usually as applied fields or forces. They are combined with other equations governing physical laws to solve physical problems; for example in fluid mechanics the flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field, or in structural analysis, the connection between applied stresses or loads to strains or deformations.

<span class="mw-page-title-main">Semi-empirical mass formula</span> Formula to approximate nuclear mass based on nucleon counts

In nuclear physics, the semi-empirical mass formula (SEMF) is used to approximate the mass of an atomic nucleus from its number of protons and neutrons. As the name suggests, it is based partly on theory and partly on empirical measurements. The formula represents the liquid-drop model proposed by George Gamow, which can account for most of the terms in the formula and gives rough estimates for the values of the coefficients. It was first formulated in 1935 by German physicist Carl Friedrich von Weizsäcker, and although refinements have been made to the coefficients over the years, the structure of the formula remains the same today.

<span class="mw-page-title-main">Microstrip</span> Conductor–ground plane electrical transmission line

Microstrip is a type of electrical transmission line which can be fabricated with any technology where a conductor is separated from a ground plane by a dielectric layer known as "substrate". Microstrip lines are used to convey microwave-frequency signals.

<span class="mw-page-title-main">Hill equation (biochemistry)</span> Diagram showing the proportion of a receptor bound to a ligand

In biochemistry and pharmacology, the Hill equation refers to two closely related equations that reflect the binding of ligands to macromolecules, as a function of the ligand concentration. A ligand is "a substance that forms a complex with a biomolecule to serve a biological purpose", and a macromolecule is a very large molecule, such as a protein, with a complex structure of components. Protein-ligand binding typically changes the structure of the target protein, thereby changing its function in a cell.

<span class="mw-page-title-main">Metabolic control analysis</span> Metabolic control

Metabolic control analysis (MCA) is a mathematical framework for describing metabolic, signaling, and genetic pathways. MCA quantifies how variables, such as fluxes and species concentrations, depend on network parameters. In particular, it is able to describe how network-dependent properties, called control coefficients, depend on local properties called elasticities or Elasticity Coefficients.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In materials science, effective medium approximations (EMA) or effective medium theory (EMT) pertain to analytical or theoretical modeling that describes the macroscopic properties of composite materials. EMAs or EMTs are developed from averaging the multiple values of the constituents that directly make up the composite material. At the constituent level, the values of the materials vary and are inhomogeneous. Precise calculation of the many constituent values is nearly impossible. However, theories have been developed that can produce acceptable approximations which in turn describe useful parameters including the effective permittivity and permeability of the materials as a whole. In this sense, effective medium approximations are descriptions of a medium based on the properties and the relative fractions of its components and are derived from calculations, and effective medium theory. There are two widely used formulae.

The rate of a chemical reaction is influenced by many different factors, such as temperature, pH, reactant, and product concentrations and other effectors. The degree to which these factors change the reaction rate is described by the elasticity coefficient. This coefficient is defined as follows:

<span class="mw-page-title-main">Branched pathways</span> Common pattern in metabolism

Branched pathways, also known as branch points, are a common pattern found in metabolism. This is where an intermediate species is chemically made or transformed by multiple enzymatic processes. linear pathways only have one enzymatic reaction producing a species and one enzymatic reaction consuming the species.

In metabolic control analysis, a variety of theorems have been discovered and discussed in the literature. The most well known of these are flux and concentration control coefficient summation relationships. These theorems are the result of the stoichiometric structure and mass conservation properties of biochemical networks. Equivalent theorems have not been found, for example, in electrical or economic systems.

The stoichiometric structure and mass-conservation properties of biochemical pathways gives rise to a series of theorems or relationships between the control coefficients and the control coefficients and elasticities. There are a large number of such relationships depending on the pathway configuration which have been documented and discovered by various authors. The term theorem has been used to describe these relationships because they can be proved in terms of more elementary concepts. The operational proofs in particular are of this nature.

References

  1. 1 2 Kacser, H; Burns, JA (1973). "The control of flux". Symposia of the Society for Experimental Biology. 27: 65–104. PMID   4148886.
  2. Cascante, Marta; Boros, Laszlo G.; Comin-Anduix, Begoña; de Atauri, Pedro; Centelles, Josep J.; Lee, Paul W.-N. (March 2002). "Metabolic control analysis in drug discovery and disease". Nature Biotechnology. 20 (3): 243–249. doi:10.1038/nbt0302-243. PMID   11875424. S2CID   3937563.
  3. Reder, Christine (November 1988). "Metabolic control theory: A structural approach". Journal of Theoretical Biology. 135 (2): 175–201. Bibcode:1988JThBi.135..175R. doi:10.1016/S0022-5193(88)80073-0. PMID   3267767.
  4. Hofmeyr, Jan-hendrik S. (2001). "Metabolic control analysis in a nutshell". In Proceedings of the 2 Nd International Conference on Systems Biology: 291–300. CiteSeerX   10.1.1.324.922 .