Flux (metabolism)

Last updated

In biochemistry, metabolic flux (often referred to as flux) is the rate of turnover of molecules through a metabolic pathway. Flux is regulated by the enzymes involved in a pathway. Within cells, regulation of flux is vital for all metabolic pathways to regulate the pathway's activity under different conditions. [1] Flux is therefore of great interest in metabolic network modelling, where it is analysed via flux balance analysis and metabolic control analysis.

Contents

In this manner, flux is the movement of matter through metabolic networks that are connected by metabolites and cofactors, and is therefore a way of describing the activity of the metabolic network as a whole using a single characteristic.

Metabolic flux

It is easiest to describe the flux of metabolites through a pathway by considering the reaction steps individually. The flux of the metabolites through each reaction (J) is the rate of the forward reaction (Vf), less that of the reverse reaction (Vr): [2]

At equilibrium, there is no flux. Furthermore, it is observed that throughout a steady-state pathway, the flux is determined to varying degrees by all steps in the pathway. The degree of influence is measured by the flux control coefficient.

Control of metabolic flux

Control of flux through a metabolic pathway requires that

Control of flux in a metabolic pathways:

Metabolic networks

Cellular metabolism is represented by a large number of metabolic reactions involving the conversion of the carbon source (usually glucose) into the building blocks needed for macromolecular biosynthesis. These reactions form metabolic networks within cells. These networks can then be used to study metabolism within cells.

To allow these networks to interact, a tight connection between them is necessary. This connection is provided by usage of common cofactors such as ATP, ADP, NADH and NADPH. In addition to this, sharing of some metabolites between the different networks further tightens the connections between the different networks.

Control of metabolic networks

Existing metabolic networks control the movement of molecules through their enzymatic steps by regulating enzymes that catalyze irreversible reactions. The movement of molecules through reversible steps is generally unregulated by enzymes, but rather regulated by the concentration of products and reactants. [3] Irreversible reactions at regulated steps of a pathway have a negative free energy change, thereby promoting spontaneous reactions in one direction only. Reversible reactions have no or very small free energy change. As a result, the movement of molecules through a metabolic network is governed by simple chemical equilibria (at reversible steps), with specific key enzymes that are subject to regulation (at irreversible steps). This enzymatic regulation may be indirect, in the case of an enzyme being regulated by some cell signalling mechanism (like phosphorylation), or it may be direct, as in the case of allosteric regulation, where metabolites from a different portion of a metabolic network bind directly to and affect the catalytic function of other enzymes in order to maintain homeostasis.

A result that may seem at first counter intuitive, is that regulated steps tends to have small flux control coefficients. The reason is that these steps are part of a control system that stabilizes fluxes, hence a perturbation in the activity of a regulated step will inevitably trigger the control system to resist the perturbation, hence the flux control coefficients will tend to be small. This explains why, for example, that phosphofructokinase in glycolysis has such as small flux control coefficient. [4]

Fluxes and genotype

Metabolic fluxes are a function of gene expression, translation, post translational protein modifications and protein-metabolite interactions. [5]

Fluxes and phenotype

The function of the central carbon metabolism (metabolism of glucose) has been fine-tuned to exactly meet the needs of the building blocks and Gibbs free energy in conjunction with cell growth. There is therefore tight regulation of the fluxes through the central carbon metabolism.

The flux in a reaction can be defined based on one of three things

Considering the above, the metabolic fluxes can be described as the ultimate representation of the cellular phenotype when expressed under certain conditions.

Roles of metabolic flux in cells

Regulation of mammalian cell growth

Research has shown that cells undergoing rapid growth have shown changes in their metabolism. [6] These changes are observed with regards to glucose metabolism. The changes in metabolism occur because the rate of metabolism controls various signal transduction pathways that coordinate the activation of transcription factors as well as determining cell-cycle progress.

Growing cells require synthesis of new nucleotides, membranes and protein components. [5] [6] These materials can be obtained from carbon metabolism (e.g. glucose metabolism) or from peripheral metabolism. The enhanced flux observed in abnormally growing cells is brought about by high glucose uptake.

Cancer

Metabolic flux and more specifically how metabolism is affected due to changes in the various pathways has grown in importance since it was observed that tumour cells exhibit enhanced glucose metabolism compared to normal cells. [6] Through studying these changes, it is possible to better understand the mechanisms of cell growth and where possible develop treatments to counter the effects of enhanced metabolism.

Measuring fluxes

There are several ways of measuring fluxes, however all of these are indirect. Due to this, these methods make one key assumption which is that all fluxes into a given intracellular metabolite pool balance all the fluxes out of the pool. [5]

This assumption means that for a given metabolic network the balances around each metabolite impose a number of constraints on the system.

The techniques currently used mainly revolve around the use of either nuclear magnetic resonance (NMR) or gas chromatography–mass spectrometry (GC–MS).

In order to avoid the complexity of data analysis, a simpler method of estimating flux ratios has recently been developed which is based on cofeeding unlabelled and uniformly 13C labelled glucose. The metabolic intermediate patterns are then analysed using NMR spectroscopy. This method can also be used to determine the metabolic network topologies.

See also

Related Research Articles

<span class="mw-page-title-main">Citric acid cycle</span> Interconnected biochemical reactions releasing energy

The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol. The chemical energy released is available in the form of ATP. The Krebs cycle is used by organisms that respire to generate energy, either by anaerobic respiration or aerobic respiration. In addition, the cycle provides precursors of certain amino acids, as well as the reducing agent NADH, that are used in numerous other reactions. Its central importance to many biochemical pathways suggests that it was one of the earliest components of metabolism. Even though it is branded as a "cycle", it is not necessary for metabolites to follow only one specific route; at least three alternative segments of the citric acid cycle have been recognized.

<span class="mw-page-title-main">Glycolysis</span> Series of interconnected biochemical reactions

Glycolysis is the metabolic pathway that converts glucose into pyruvate and, in most organisms, occurs in the liquid part of cells. The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). Glycolysis is a sequence of ten reactions catalyzed by enzymes.

<span class="mw-page-title-main">Metabolism</span> Set of chemical reactions in organisms

Metabolism is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the elimination of metabolic wastes. These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. The word metabolism can also refer to the sum of all chemical reactions that occur in living organisms, including digestion and the transportation of substances into and between different cells, in which case the above described set of reactions within the cells is called intermediary metabolism.

<span class="mw-page-title-main">Metabolic pathway</span> Linked series of chemical reactions occurring within a cell

In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical reactions catalyzed by enzymes. In most cases of a metabolic pathway, the product of one enzyme acts as the substrate for the next. However, side products are considered waste and removed from the cell.

<span class="mw-page-title-main">Phosphorylation</span> Chemical process of introducing a phosphate

In biochemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology. Protein phosphorylation often activates many enzymes.

<span class="mw-page-title-main">Acetyl-CoA</span> Chemical compound

Acetyl-CoA is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle to be oxidized for energy production.

<span class="mw-page-title-main">Anabolism</span> Metabolic pathways to build molecules

Anabolism is the set of metabolic pathways that construct macromolecules like DNA or RNA from smaller units. These reactions require energy, known also as an endergonic process. Anabolism is the building-up aspect of metabolism, whereas catabolism is the breaking-down aspect. Anabolism is usually synonymous with biosynthesis.

Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis occurs mainly in the liver and, to a lesser extent, in the cortex of the kidneys. It is one of two primary mechanisms – the other being degradation of glycogen (glycogenolysis) – used by humans and many other animals to maintain blood sugar levels, avoiding low levels (hypoglycemia). In ruminants, because dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs regardless of fasting, low-carbohydrate diets, exercise, etc. In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise.

Carbohydrate metabolism is the whole of the biochemical processes responsible for the metabolic formation, breakdown, and interconversion of carbohydrates in living organisms.

<span class="mw-page-title-main">Pyruvate kinase</span> Class of enzymes

Pyruvate kinase is the enzyme involved in the last step of glycolysis. It catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), yielding one molecule of pyruvate and one molecule of ATP. Pyruvate kinase was inappropriately named before it was recognized that it did not directly catalyze phosphorylation of pyruvate, which does not occur under physiological conditions. Pyruvate kinase is present in four distinct, tissue-specific isozymes in animals, each consisting of particular kinetic properties necessary to accommodate the variations in metabolic requirements of diverse tissues.

The term amphibolism is used to describe a biochemical pathway that involves both catabolism and anabolism. Catabolism is a degradative phase of metabolism in which large molecules are converted into smaller and simpler molecules, which involves two types of reactions. First, hydrolysis reactions, in which catabolism is the breaking apart of molecules into smaller molecules to release energy. Examples of catabolic reactions are digestion and cellular respiration, where sugars and fats are broken down for energy. Breaking down a protein into amino acids, or a triglyceride into fatty acids, or a disaccharide into monosaccharides are all hydrolysis or catabolic reactions. Second, oxidation reactions involve the removal of hydrogens and electrons from an organic molecule. Anabolism is the biosynthesis phase of metabolism in which smaller simple precursors are converted to large and complex molecules of the cell. Anabolism has two classes of reactions. The first are dehydration synthesis reactions; these involve the joining of smaller molecules together to form larger, more complex molecules. These include the formation of carbohydrates, proteins, lipids and nucleic acids. The second are reduction reactions, in which hydrogens and electrons are added to a molecule. Whenever that is done, molecules gain energy.

<span class="mw-page-title-main">Glucose 6-phosphate</span> Chemical compound

Glucose 6-phosphate is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way.

<span class="mw-page-title-main">Metabolic engineering</span>

Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the cell's production of a certain substance. These processes are chemical networks that use a series of biochemical reactions and enzymes that allow cells to convert raw materials into molecules necessary for the cell's survival. Metabolic engineering specifically seeks to mathematically model these networks, calculate a yield of useful products, and pin point parts of the network that constrain the production of these products. Genetic engineering techniques can then be used to modify the network in order to relieve these constraints. Once again this modified network can be modeled to calculate the new product yield.

Anaplerotic reactions, a term coined by Hans Kornberg and originating from the Greek ἀνά= 'up' and πληρόω= 'to fill', are chemical reactions that form intermediates of a metabolic pathway. Examples of such are found in the citric acid cycle. In normal function of this cycle for respiration, concentrations of TCA intermediates remain constant; however, many biosynthetic reactions also use these molecules as a substrate. Anaplerosis is the act of replenishing TCA cycle intermediates that have been extracted for biosynthesis.

<span class="mw-page-title-main">1,3-Bisphosphoglyceric acid</span> Chemical compound

1,3-Bisphosphoglyceric acid (1,3-Bisphosphoglycerate or 1,3BPG) is a 3-carbon organic molecule present in most, if not all, living organisms. It primarily exists as a metabolic intermediate in both glycolysis during respiration and the Calvin cycle during photosynthesis. 1,3BPG is a transitional stage between glycerate 3-phosphate and glyceraldehyde 3-phosphate during the fixation/reduction of CO2. 1,3BPG is also a precursor to 2,3-bisphosphoglycerate which in turn is a reaction intermediate in the glycolytic pathway.

<span class="mw-page-title-main">Metabolic network modelling</span> Form of biological modelling

Metabolic network modelling, also known as metabolic network reconstruction or metabolic pathway analysis, allows for an in-depth insight into the molecular mechanisms of a particular organism. In particular, these models correlate the genome with molecular physiology. A reconstruction breaks down metabolic pathways into their respective reactions and enzymes, and analyzes them within the perspective of the entire network. In simplified terms, a reconstruction collects all of the relevant metabolic information of an organism and compiles it in a mathematical model. Validation and analysis of reconstructions can allow identification of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. This knowledge can then be applied to create novel biotechnology.

<span class="mw-page-title-main">Phosphoenolpyruvate carboxylase</span> Class of enzymes

Phosphoenolpyruvate carboxylase (also known as PEP carboxylase, PEPCase, or PEPC; EC 4.1.1.31, PDB ID: 3ZGE) is an enzyme in the family of carboxy-lyases found in plants and some bacteria that catalyzes the addition of bicarbonate (HCO3) to phosphoenolpyruvate (PEP) to form the four-carbon compound oxaloacetate and inorganic phosphate:

<span class="mw-page-title-main">Committed step</span> Irreversible reaction step at the branch points of biochemical pathways

In biochemistry, the committed step is an effectively irreversible, enzyme-catalyzed reaction that occurs at a branch point during the biosynthesis of some molecules. As the name implies, after this step, the molecules are "committed" to the pathway and will ultimately end up in the pathway's final product. The first committed step should not be confused with the rate-limiting step, which is the step with the highest flux control coefficient. It is rare that the first committed step is in fact the rate-determining step.

In biochemistry, a rate-limiting step is a reaction step that controls the rate of a series of biochemical reactions. The statement is, however, a misunderstanding of how a sequence of enzyme-catalyzed reaction steps operate. Rather than a single step controlling the rate, it has been discovered that multiple steps control the rate. Moreover, each controlling step controls the rate to varying degrees.

In metabolic control analysis, a variety of theorems have been discovered and discussed in the literature. The most well known of these are flux and concentration control coefficient summation relationships. These theorems are the result of the stoichiometric structure and mass conservation properties of biochemical networks. Equivalent theorems have not been found, for example, in electrical or economic systems.

References

  1. Voet, Donald; Voet, Judith G. (1995). Biochemistry (2nd ed.). J. Wiley & Sons. p. 439. ISBN   978-0471586517.
  2. 1 2 Voet, Donald; Voet, Judith G. (2011). Biochemistry (4th ed.). John Wiley & Sons. p. 620. ISBN   978-0-470-57095-1.
  3. Nelson, David L.; Cox, Michael M. (2004). Lehninger Principles of Biochemistry (4th ed.). W.H. Freeman. pp. 571, 592. ISBN   978-0-71674339-2.
  4. Sauro, Herbert M. (February 2017). "Control and regulation of pathways via negative feedback". Journal of the Royal Society Interface. 14 (127): 20160848. doi:10.1098/rsif.2016.0848. PMC   5332569 . PMID   28202588.
  5. 1 2 3 4 Nielsen, J (December 2003). "It Is All about Metabolic Fluxes". J Bacteriol. 185 (24): 7031–5. doi:10.1128/jb.185.24.7031-7035.2003. PMC   296266 . PMID   14645261.
  6. 1 2 3 Locasale, JW; Cantley, LC (5 October 2011). "Metabolic Flux and the Regulation of Mammalian Cell Growth". Cell Metab. 14 (4): 443–51. doi:10.1016/j.cmet.2011.07.014. PMC   3196640 . PMID   21982705.