Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a one step nucleic acid amplification method to multiply specific sequences of RNA. It is used to diagnose infectious disease caused by RNA viruses. [1]
It combines LAMP [2] DNA-detection with reverse transcription, making cDNA from RNA before running the reaction. [3] RT-LAMP does not require thermal cycles (unlike PCR) and is performed at a constant temperature between 60 and 65 °C.
RT-LAMP is used in the detection of RNA viruses (groups II, IV, and V on the Baltimore Virus Classification system), such as the SARS-CoV-2 virus [4] and the Ebola virus. [5]
RT-LAMP is used to test for the presence of specific RNA-samples of viruses for the specific sequence of the virus, made possible by comparing the sequences against a large external database of references.
The RT-LAMP technique is being supported as a cheaper and easier alternative to RT-PCR for the early diagnostics of people that are infectious for COVID-19. [6] There are open access test designs (including the recombinant proteins) which makes it legally possible for anyone to produce a test. In contrast to classic rapid tests by lateral flow, RT-LAMP allows the early diagnosis of the disease by testing the viral RNA. [7]
The tests can be done without previous RNA-isolation, detecting the viruses directly from swabs [8] or from saliva. [9]
One example of use case of RT-LAMP was as an experiment to detect a new duck Tembusu-like, BYD virus, named after the region, Baiyangdian, where it was first isolated [10] [11] [1] Another recent application of this method, was in a 2013 experiment to detect an Akabane virus using RT-LAMP. The experiment, done in China, isolated the virus from aborted calf fetuses. [12]
RT-LAMP is also being used in Forensic Serology to identify body fluids. Researchers have done experiments to show that this method can effectively identify certain body fluids. Knowing there would be limitations, Su et al, come to the conclusion that RT-LAMP was only able to identify blood. [13] [14]
A specific sequence of the cDNA is detected by 4 LAMP primers. Two of them are inner primers (FIP and BIP), which serve as base for the Bst enzyme copy the template into a new DNA. The outer primers(F3 and B3) anneal to the template strand and help the reaction to proceed.
As in the case of RT-PCR, the RT-LAMP procedure starts by making DNA from the sample RNA. This conversion is made by a reverse transcriptase, an enzyme derived from retroviruses capable of making such a conversion. [15] This DNA derived from RNA is called cDNA, or complementary DNA. The FIP primer is used by the reverse transcriptase to build a single-strand of copy DNA. The F3 primer binds to this side of the template strand as well, and displaces the previously made copy.
This displaced, single-stranded copy is a mixture of target RNA and primers. The primers are designed to have a sequence that binds to the sequence itself, forming a loop.
The BIP primer binds to the other end of this single strand and is used by the Bst DNA polymerase to build a complementary strand, making double-strand DNA. The F3 primer binds to this end and displaces, once again, this newly generated single-stranded DNA molecule.
This new single strand that has been released will act as the starting point for the LAMP cycling amplification. This single-stranded DNA has a dumbbell-like structure as the ends fold and self-bind, forming two loops.
The DNA polymerase and the FIP or BIP primers keep amplifying this strand and the LAMP-reaction product is extended. This cycle can be started from either the forward or backward side of the strand using the appropriate primer. Once this cycle has begun, the strand undergoes self-primed DNA synthesis during the elongation stage of the amplification process. This amplification takes place in less an hour, under isothermal conditions between 60 and 65 °C.
The read out of RT-LAMP tests is frequently colorimetric. Two of the common ways are based on measuring either pH or magnesium ions. The amplification reaction causes pH to lower and Mg2+ levels to drop. This can be perceived by indicators, such as Phenol red, for pH, and hydroxynaphthol blue (HNB), for magnesium. [15] Another option is to use SYBR Green I, a DNA intercalating coloring agent. [16]
This method is specifically advantageous because it can all be done quickly in one step. The sample is mixed with the primers, reverse transcriptase and DNA polymerase and the reaction takes place under a constant temperature. The required temperature can be achieved using a simple hot water bath.
PCR requires thermocycling; RT-LAMP does not, making it more time efficient and very cost effective. [3] This inexpensive and streamlined method can be more readily used in developing countries that do not have access to high tech laboratories.
A disadvantage of this method is generating the sequence specific primers. For each LAMP assay, primers must be specifically designed to be compatible with the target DNA. This can be difficult which discourages researchers from using the LAMP method in their work. [1] There is however, a free software called Primer Explorer, developed by Fujitsu in Japan, which can aid in the selection of these primers.
In genetics, complementary DNA (cDNA) is DNA synthesized from a single-stranded RNA template in a reaction catalyzed by the enzyme reverse transcriptase. cDNA is often used to express a specific protein in a cell that does not normally express that protein, or to sequence or quantify mRNA molecules using DNA based methods. cDNA that codes for a specific protein can be transferred to a recipient cell for expression, often bacterial or yeast expression systems. cDNA is also generated to analyze transcriptomic profiles in bulk tissue, single cells, or single nuclei in assays such as microarrays, qPCR, and RNA-seq.
The polymerase chain reaction (PCR) is a method widely used to make millions to billions of copies of a specific DNA sample rapidly, allowing scientists to amplify a very small sample of DNA sufficiently to enable detailed study. PCR was invented in 1983 by American biochemist Kary Mullis at Cetus Corporation; Mullis and biochemist Michael Smith, who had developed other essential ways of manipulating DNA, were jointly awarded the Nobel Prize in Chemistry in 1993.
Viral load, also known as viral burden, is a numerical expression of the quantity of virus in a given volume of fluid, including biological and environmental specimens. It is not to be confused with viral titre or viral titer, which depends on the assay. When an assay for measuring the infective virus particle is done, viral titre often refers to the concentration of infectious viral particles, which is different from the total viral particles. Viral load is measured using body fluids Sputum and blood plasma. As an example of environmental specimens, the viral load of norovirus can be determined from run-off water on garden produce. Norovirus has not only prolonged viral shedding and has the ability to survive in the environment but a minuscule infectious dose is required to produce infection in humans: less than 100 viral particles.
Reverse transcription polymerase chain reaction (RT-PCR) is a laboratory technique combining reverse transcription of RNA into DNA and amplification of specific DNA targets using polymerase chain reaction (PCR). It is primarily used to measure the amount of a specific RNA. This is achieved by monitoring the amplification reaction using fluorescence, a technique called real-time PCR or quantitative PCR (qPCR). Combined RT-PCR and qPCR are routinely used for analysis of gene expression and quantification of viral RNA in research and clinical settings.
DNA synthesis is the natural or artificial creation of deoxyribonucleic acid (DNA) molecules. DNA is a macromolecule made up of nucleotide units, which are linked by covalent bonds and hydrogen bonds, in a repeating structure. DNA synthesis occurs when these nucleotide units are joined to form DNA; this can occur artificially or naturally. Nucleotide units are made up of a nitrogenous base, pentose sugar (deoxyribose) and phosphate group. Each unit is joined when a covalent bond forms between its phosphate group and the pentose sugar of the next nucleotide, forming a sugar-phosphate backbone. DNA is a complementary, double stranded structure as specific base pairing occurs naturally when hydrogen bonds form between the nucleotide bases.
Helicase-dependent amplification (HDA) is a method for in vitro DNA amplification that takes place at a constant temperature.
In molecular biology, an amplicon is a piece of DNA or RNA that is the source and/or product of amplification or replication events. It can be formed artificially, using various methods including polymerase chain reactions (PCR) or ligase chain reactions (LCR), or naturally through gene duplication. In this context, amplification refers to the production of one or more copies of a genetic fragment or target sequence, specifically the amplicon. As it refers to the product of an amplification reaction, amplicon is used interchangeably with common laboratory terms, such as "PCR product."
Rapid amplification of cDNA ends (RACE) is a technique used in molecular biology to obtain the full length sequence of an RNA transcript found within a cell. RACE results in the production of a cDNA copy of the RNA sequence of interest, produced through reverse transcription, followed by PCR amplification of the cDNA copies. The amplified cDNA copies are then sequenced and, if long enough, should map to a unique genomic region. RACE is commonly followed up by cloning before sequencing of what was originally individual RNA molecules. A more high-throughput alternative which is useful for identification of novel transcript structures, is to sequence the RACE-products by next generation sequencing technologies.
A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR). It monitors the amplification of a targeted DNA molecule during the PCR, not at its end, as in conventional PCR. Real-time PCR can be used quantitatively and semi-quantitatively.
Rolling circle replication (RCR) is a process of unidirectional nucleic acid replication that can rapidly synthesize multiple copies of circular molecules of DNA or RNA, such as plasmids, the genomes of bacteriophages, and the circular RNA genome of viroids. Some eukaryotic viruses also replicate their DNA or RNA via the rolling circle mechanism.
TaqMan probes are hydrolysis probes that are designed to increase the specificity of quantitative PCR. The method was first reported in 1991 by researcher Kary Mullis at Cetus Corporation, and the technology was subsequently developed by Hoffmann-La Roche for diagnostic assays and by Applied Biosystems for research applications.
New England Biolabs (NEB) produces and supplies recombinant and native enzyme reagents for the life science research, as well as providing products and services supporting genome editing, synthetic biology and next-generation sequencing. NEB also provides free access to research tools such as REBASE, InBASE, and Polbase.
Nucleic acid sequence-based amplification, commonly referred to as NASBA, is a method in molecular biology which is used to produce multiple copies of single stranded RNA. NASBA is a two-step process that takes RNA and anneals specially designed primers, then utilizes an enzyme cocktail to amplify it.
Loop-mediated isothermal amplification (LAMP) is a single-tube technique for the amplification of DNA and a low-cost alternative to detect certain diseases. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) combines LAMP with a reverse transcription step to allow the detection of RNA.
Webtag is an on-line bioinformatics tool providing oligonucleotide sequences that are absent from a specified genome. These tags can be appended to gene specific primers for reverse transcriptase polymerase chain reaction (RT-PCR) experiments, circumventing genomic DNA contamination.
A nucleic acid test (NAT) is a technique used to detect a particular nucleic acid sequence and thus usually to detect and identify a particular species or subspecies of organism, often a virus or bacterium that acts as a pathogen in blood, tissue, urine, etc. NATs differ from other tests in that they detect genetic materials rather than antigens or antibodies. Detection of genetic materials allows an early diagnosis of a disease because the detection of antigens and/or antibodies requires time for them to start appearing in the bloodstream. Since the amount of a certain genetic material is usually very small, many NATs include a step that amplifies the genetic material—that is, makes many copies of it. Such NATs are called nucleic acid amplification tests (NAATs). There are several ways of amplification, including polymerase chain reaction (PCR), strand displacement assay (SDA), or transcription mediated assay (TMA).
The versatility of polymerase chain reaction (PCR) has led to modifications of the basic protocol being used in a large number of variant techniques designed for various purposes. This article summarizes many of the most common variations currently or formerly used in molecular biology laboratories; familiarity with the fundamental premise by which PCR works and corresponding terms and concepts is necessary for understanding these variant techniques.
Multiplex polymerase chain reaction refers to the use of polymerase chain reaction to amplify several different DNA sequences simultaneously. This process amplifies DNA in samples using multiple primers and a temperature-mediated DNA polymerase in a thermal cycler. The primer design for all primers pairs has to be optimized so that all primer pairs can work at the same annealing temperature during PCR.
Recombinase polymerase amplification (RPA) is a single tube, isothermal alternative to the polymerase chain reaction (PCR). By adding a reverse transcriptase enzyme to an RPA reaction it can detect RNA as well as DNA, without the need for a separate step to produce cDNA,. Because it is isothermal, RPA can use much simpler equipment than PCR, which requires a thermal cycler. Operating best at temperatures of 37–42 °C and still working, albeit more slowly, at room temperature means RPA reactions can in theory be run quickly simply by holding a tube. This makes RPA an excellent candidate for developing low-cost, rapid, point-of-care molecular tests. An international quality assessment of molecular detection of Rift Valley fever virus performed as well as the best RT-PCR tests, detecting less concentrated samples missed by some PCR tests and an RT-LAMP test. RPA was developed and launched by TwistDx Ltd., a biotechnology company based in Cambridge, UK.
Transcription-mediated amplification (TMA) is an isothermal, single-tube nucleic acid amplification system utilizing two enzymes, RNA polymerase and reverse transcriptase.