Revolving rivers

Last updated

Revolving rivers are a surprising, uncommon way of sand pile growth that can be found in a few sands around the world, but has been studied in detail only for one Cuban sand from a place called Santa Teresa (Pinar del Rio province).

Contents

Description

When pouring "revolving" sand on a flat surface from a fixed position, the growth of a conical pile does not occur by the common avalanche mechanism, where sand slides down the pile in a more or less random fashion. What happens in that a relatively thin "river" of flowing sand travels from the pouring point at the apex of the pile to its base, while the rest of the sand at the surface is static. In addition, the river "revolves" around the pile either in clockwise or counter-clockwise directions (looking from top) depending on the initial conditions. Actually the river constitutes the "cutting edge" of a layer of sand that deposits as a helix on the conical pile, and makes it grow. For small sandpiles, rivers are continuous, but they become intermittent for larger piles.

History and state of the art

The phenomenon was observed first by E. Altshuler at the University of Havana in 1995, but at the time he assumed that it was well known, and temporarily forgot about it. In 2000, being at the University of Houston, he told K. E. Bassler, who showed a vivid interest in the matter. Embarrassingly enough, Altshuler was unable to demonstrate it before Bassler using a random sand from Houston, so he had to send him a video from Cuba after his return to the island.

Once the existence of the strange phenomenon was confirmed for everyone, E. Altshuler and a number of collaborators performed a systematic study in Havana, which was then jointly published with Bassler. [1] Further work has been done to understand in more detail the phenomenon, [2] [3] and it has been found in other sands from different parts of the world. However, the connection between the physical, chemical (and possibly biological) properties of the grains in a specific sand, the nature of the inter-grain interactions, and the emergence of the revolving rivers is still an open question.

Sand from Santa Teresa is made of almost pure silicon dioxide grains with an average grain size of 0.2 mm approximately and no visible special features regarding grain shape. But in spite of its apparent simplicity, many puzzles still remain. For example, after many experiments one batch of sand may stop showing revolving rivers (just as singing sand eventually stops singing), which suggests that the decay is connected to certain properties of the surface of the grains that degrade by continued friction.

Videos of the effect are available on YouTube. [4]

Related Research Articles

<span class="mw-page-title-main">BCS theory</span> Microscopic theory of superconductivity

BCS theory or Bardeen–Cooper–Schrieffer theory is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes superconductivity as a microscopic effect caused by a condensation of Cooper pairs. The theory is also used in nuclear physics to describe the pairing interaction between nucleons in an atomic nucleus.

<span class="mw-page-title-main">Metastability</span> Intermediate energetic state within a dynamical system

In chemistry and physics, metastability denotes an intermediate energetic state within a dynamical system other than the system's state of least energy. A ball resting in a hollow on a slope is a simple example of metastability. If the ball is only slightly pushed, it will settle back into its hollow, but a stronger push may start the ball rolling down the slope. Bowling pins show similar metastability by either merely wobbling for a moment or tipping over completely. A common example of metastability in science is isomerisation. Higher energy isomers are long lived because they are prevented from rearranging to their preferred ground state by barriers in the potential energy.

<span class="mw-page-title-main">Singing sand</span> A phenomenon of sand that produces sound

Singing sand, also called whistling sand, barking sand or singing dune, is sand that produces sound. The sound emission may be caused by wind passing over dunes or by walking on the sand.

<span class="mw-page-title-main">Barchan</span> Crescent-shaped dune

A barchan or barkhan dune is a crescent-shaped dune. The term was introduced in 1881 by Russian naturalist Alexander von Middendorf, based on their occurrence in Turkestan and other inland desert regions. Barchans face the wind, appearing convex and are produced by wind action predominantly from one direction. They are a very common landform in sandy deserts all over the world and are arc-shaped, markedly asymmetrical in cross section, with a gentle slope facing toward the wind sand ridge, comprising well-sorted sand.

<span class="mw-page-title-main">Quantum Zeno effect</span> Quantum measurement phenomenon

The quantum Zeno effect is a feature of quantum-mechanical systems allowing a particle's time evolution to be slowed down by measuring it frequently enough with respect to some chosen measurement setting.

<span class="mw-page-title-main">Granular convection</span> Movement in granular material

Granular convection is a phenomenon where granular material subjected to shaking or vibration will exhibit circulation patterns similar to types of fluid convection. It is sometimes called the Brazil nut effect, when the largest of irregularly shaped particles end up on the surface of a granular material containing a mixture of variously sized objects. This name derives from the example of a typical container of mixed nuts, in which the largest will be Brazil nuts. The phenomenon is also known as the muesli effect since it is seen in packets of breakfast cereal containing particles of different sizes but similar density, such as muesli mix.

<span class="mw-page-title-main">Self-organized criticality</span> Concept in physics

Self-organized criticality (SOC) is a property of dynamical systems that have a critical point as an attractor. Their macroscopic behavior thus displays the spatial or temporal scale-invariance characteristic of the critical point of a phase transition, but without the need to tune control parameters to a precise value, because the system, effectively, tunes itself as it evolves towards criticality.

<span class="mw-page-title-main">Dephasing</span> Mechanism recovering classical behavior from a quantum system

In physics, dephasing is a mechanism that recovers classical behaviour from a quantum system. It refers to the ways in which coherence caused by perturbation decays over time, and the system returns to the state before perturbation. It is an important effect in molecular and atomic spectroscopy, and in the condensed matter physics of mesoscopic devices.

In physics, an oscillon is a soliton-like phenomenon that occurs in granular and other dissipative media. Oscillons in granular media result from vertically vibrating a plate with a layer of uniform particles placed freely on top. When the sinusoidal vibrations are of the correct amplitude and frequency and the layer of sufficient thickness, a localized wave, referred to as an oscillon, can be formed by locally disturbing the particles. This meta-stable state will remain for a long time in the absence of further perturbation. An oscillon changes form with each collision of the grain layer and the plate, switching between a peak that projects above the grain layer to a crater like depression with a small rim. This self-sustaining state was named by analogy with the soliton, which is a localized wave that maintains its integrity as it moves. Whereas solitons occur as travelling waves in a fluid or as electromagnetic waves in a waveguide, oscillons may be stationary.

<span class="mw-page-title-main">Topological order</span> Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

The Askaryan radiation also known as Askaryan effect is the phenomenon whereby a particle traveling faster than the phase velocity of light in a dense dielectric produces a shower of secondary charged particles which contains a charge anisotropy and thus emits a cone of coherent radiation in the radio or microwave part of the electromagnetic spectrum. It is similar to the Cherenkov radiation. It is named after Gurgen Askaryan, a Soviet-Armenian physicist who postulated it in 1962.

Universal conductance fluctuations(UCF) in mesoscopic physics is a phenomenon encountered in electrical transport experiments in mesoscopic species. The measured electrical conductance will vary from sample to sample, mainly due to inhomogeneous scattering sites. Fluctuations originate from coherence effects for electronic wavefunctions and thus the phase-coherence length needs be larger than the momentum relaxation length . UCF is more profound when electrical transport is in weak localization regime. where , is the number of conduction channels and is the momentum relaxation due to phonon scattering events length or mean free path. For weakly localized samples fluctuation in conductance is equal to fundamental conductance regardless of the number of channels.

<span class="mw-page-title-main">Abelian sandpile model</span> Cellular automaton

The Abelian sandpile model (ASM) is the more popular name of the original Bak–Tang–Wiesenfeld model (BTW). BTW model was the first discovered example of a dynamical system displaying self-organized criticality. It was introduced by Per Bak, Chao Tang and Kurt Wiesenfeld in a 1987 paper.

Acoustic paramagnetic resonance (APR) is a phenomenon of resonant absorption of sound by a system of magnetic particles placed in an external magnetic field. It occurs when the energy of the sound wave quantum becomes equal to the splitting of the energy levels of the particles, the splitting being induced by the magnetic field. APR is a variation of electron paramagnetic resonance (EPR) where the acoustic rather than electromagnetic waves are absorbed by the studied sample. APR was theoretically predicted in 1952, independently by Semen Altshuler and Alfred Kastler, and was experimentally observed by W. G. Proctor and W. H. Tanttila in 1955.

Maya Paczuski is the head and founder of the Complexity Science Group at the University of Calgary. She is a well-cited physicist whose work spans self-organized criticality, avalanche dynamics, earthquake, and complex networks. She was born in Israel in 1963, but grew up in the United States. Maya Paczuski received a B.S. and M.S. in Electrical Engineering and Computer Science from M.I.T. in 1986 and then went on to study with Mehran Kardar, earning her Ph.D in Condensed matter physics from the same institute.

In quantum many-body physics, topological degeneracy is a phenomenon in which the ground state of a gapped many-body Hamiltonian becomes degenerate in the limit of large system size such that the degeneracy cannot be lifted by any local perturbations.

Gary T. Horowitz is an American theoretical physicist who works on string theory and quantum gravity.

Robustness, the ability to withstand failures and perturbations, is a critical attribute of many complex systems including complex networks.

Many-body localization (MBL) is a dynamical phenomenon occurring in isolated many-body quantum systems. It is characterized by the system failing to reach thermal equilibrium, and retaining a memory of its initial condition in local observables for infinite times.

John Pascal Vinti was an American theoretical physicist, who published papers not only in physics, but also in mathematics and engineering. He is known for the Vinti integral.

References

  1. Altshuler E.; et al. (2003). "Sandpile formation by revolving rivers". Physical Review Letters. 91 (1): 014501. arXiv: cond-mat/0206493 . Bibcode:2003PhRvL..91a4501A. doi:10.1103/PhysRevLett.91.014501. PMID   12906542. S2CID   45885317.
  2. Altshuler E.; et al. (2008). "Revolving rivers in sandpiles: from continuous to intermittent flows". Physical Review E. 77 (3 Pt 1): 031305. arXiv: 0711.0920 . Bibcode:2008PhRvE..77c1305A. doi:10.1103/PhysRevE.77.031305. PMID   18517368. S2CID   31735159.
  3. Kong, X.-Z.; et al. (2006). "Kinetic energy sandpile model for conical sandpile development by revolving rivers". Physics Letters A. 348 (3–6): 77–81. Bibcode:2006PhLA..348...77K. doi:10.1016/j.physleta.2005.08.068.
  4. Complexperiments (2010). "YouTubeRiosEng". YouTube .