Rice's formula

Last updated

In probability theory, Rice's formula counts the average number of times an ergodic stationary process X(t) per unit time crosses a fixed level u. [1] Adler and Taylor describe the result as "one of the most important results in the applications of smooth stochastic processes." [2] The formula is often used in engineering. [3]

Contents

History

The formula was published by Stephen O. Rice in 1944, [4] having previously been discussed in his 1936 note entitled "Singing Transmission Lines." [5] [6]

Formula

Write Du for the number of times the ergodic stationary stochastic process x(t) takes the value u in a unit of time (i.e. t  [0,1]). Then Rice's formula states that

where p(x,x') is the joint probability density of the x(t) and its mean-square derivative x'(t). [7]

If the process x(t) is a Gaussian process and u = 0 then the formula simplifies significantly to give [7] [8]

where ρ'' is the second derivative of the normalised autocorrelation of x(t) at 0.

Uses

Rice's formula can be used to approximate an excursion probability [9]

as for large values of u the probability that there is a level crossing is approximately the probability of reaching that level.

Related Research Articles

<span class="mw-page-title-main">Brownian motion</span> Random motion of particles suspended in a fluid

Brownian motion is the random motion of particles suspended in a medium.

<span class="mw-page-title-main">Probability distribution</span> Mathematical function for the probability a given outcome occurs in an experiment

In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events.

<span class="mw-page-title-main">Stochastic process</span> Collection of random variables

In probability theory and related fields, a stochastic or random process is a mathematical object usually defined as a sequence of random variables, where the index of the sequence have the interpretation of time. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology, neuroscience, physics, image processing, signal processing, control theory, information theory, computer science, cryptography, and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in finance.

In information theory, the asymptotic equipartition property (AEP) is a general property of the output samples of a stochastic source. It is fundamental to the concept of typical set used in theories of data compression.

In probability theory and statistics, a Gaussian process is a stochastic process, such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination of them is normally distributed. The distribution of a Gaussian process is the joint distribution of all those random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space.

In probability theory, the central limit theorem states that, under certain circumstances, the probability distribution of the scaled mean of a random sample converges to a normal distribution as the sample size increases to infinity. Under stronger assumptions, the Berry–Esseen theorem, or Berry–Esseen inequality, gives a more quantitative result, because it also specifies the rate at which this convergence takes place by giving a bound on the maximal error of approximation between the normal distribution and the true distribution of the scaled sample mean. The approximation is measured by the Kolmogorov–Smirnov distance. In the case of independent samples, the convergence rate is n−1/2, where n is the sample size, and the constant is estimated in terms of the third absolute normalized moment.

In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which displacements in pairwise disjoint time intervals are independent, and displacements in different time intervals of the same length have identical probability distributions. A Lévy process may thus be viewed as the continuous-time analog of a random walk.

<span class="mw-page-title-main">Mixing (mathematics)</span>

In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: e.g. mixing paint, mixing drinks, industrial mixing.

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

In statistics and probability theory, a point process or point field is a collection of mathematical points randomly located on a mathematical space such as the real line or Euclidean space. Point processes can be used for spatial data analysis, which is of interest in such diverse disciplines as forestry, plant ecology, epidemiology, geography, seismology, materials science, astronomy, telecommunications, computational neuroscience, economics and others.

<span class="mw-page-title-main">Ornstein–Uhlenbeck process</span> Stochastic process modeling random walk with friction

In mathematics, the Ornstein–Uhlenbeck process is a stochastic process with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive Brownian particle under the influence of friction. It is named after Leonard Ornstein and George Eugene Uhlenbeck.

Stochastic dominance is a partial order between random variables. It is a form of stochastic ordering. The concept arises in decision theory and decision analysis in situations where one gamble can be ranked as superior to another gamble for a broad class of decision-makers. It is based on shared preferences regarding sets of possible outcomes and their associated probabilities. Only limited knowledge of preferences is required for determining dominance. Risk aversion is a factor only in second order stochastic dominance.

In probability theory, an empirical process is a stochastic process that describes the proportion of objects in a system in a given state. For a process in a discrete state space a population continuous time Markov chain or Markov population model is a process which counts the number of objects in a given state . In mean field theory, limit theorems are considered and generalise the central limit theorem for empirical measures. Applications of the theory of empirical processes arise in non-parametric statistics.

In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process. Ergodicity is a property of the system; it is a statement that the system cannot be reduced or factored into smaller components. Ergodic theory is the study of systems possessing ergodicity.

<span class="mw-page-title-main">Local time (mathematics)</span>

In the mathematical theory of stochastic processes, local time is a stochastic process associated with semimartingale processes such as Brownian motion, that characterizes the amount of time a particle has spent at a given level. Local time appears in various stochastic integration formulas, such as Tanaka's formula, if the integrand is not sufficiently smooth. It is also studied in statistical mechanics in the context of random fields.

In financial mathematics and economics, a distortion risk measure is a type of risk measure which is related to the cumulative distribution function of the return of a financial portfolio.

In queueing theory, a discipline within the mathematical theory of probability, a heavy traffic approximation is the matching of a queueing model with a diffusion process under some limiting conditions on the model's parameters. The first such result was published by John Kingman who showed that when the utilisation parameter of an M/M/1 queue is near 1 a scaled version of the queue length process can be accurately approximated by a reflected Brownian motion.

In probability theory, an excursion probability is the probability that a stochastic process surpasses a given value in a fixed time period. It is the probability

<span class="mw-page-title-main">Poisson point process</span> Type of random mathematical object

In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The Poisson point process is often called simply the Poisson process, but it is also called a Poisson random measure, Poisson random point field or Poisson point field. This point process has convenient mathematical properties, which has led to its being frequently defined in Euclidean space and used as a mathematical model for seemingly random processes in numerous disciplines such as astronomy, biology, ecology, geology, seismology, physics, economics, image processing, and telecommunications.

Maximal entropy random walk (MERW) is a popular type of biased random walk on a graph, in which transition probabilities are chosen accordingly to the principle of maximum entropy, which says that the probability distribution which best represents the current state of knowledge is the one with largest entropy. While standard random walk chooses for every vertex uniform probability distribution among its outgoing edges, locally maximizing entropy rate, MERW maximizes it globally by assuming uniform probability distribution among all paths in a given graph.

References

  1. Rychlik, I. (2000). "On Some Reliability Applications of Rice's Formula for the Intensity of Level Crossings". Extremes. Kluwer Academic Publishers. 3 (4): 331–348. doi:10.1023/A:1017942408501. S2CID   115235517.
  2. Adler, Robert J.; Taylor, Jonathan E. (2007). Random Fields and Geometry. Springer Monographs in Mathematics. doi:10.1007/978-0-387-48116-6. ISBN   978-0-387-48112-8.
  3. Grigoriu, Mircea (2002). Stochastic Calculus: Applications in Science and Engineering. p. 166. ISBN   978-0-817-64242-6.
  4. Rice, S. O. (1944). "Mathematical analysis of random noise" (PDF). Bell System Tech. J. 23 (3): 282–332. doi:10.1002/j.1538-7305.1944.tb00874.x.
  5. Rainal, A. J. (1988). "Origin of Rice's formula". IEEE Transactions on Information Theory. 34 (6): 1383–1387. doi:10.1109/18.21276.
  6. Borovkov, K.; Last, G. (2012). "On Rice's formula for stationary multivariate piecewise smooth processes". Journal of Applied Probability. 49 (2): 351. arXiv: 1009.3885 . doi:10.1239/jap/1339878791.
  7. 1 2 Barnett, J. T. (2001). "Zero-Crossings of Random Processes with Application to Estimation Detection". In Marvasti, Farokh A. (ed.). Nonuniform Sampling: Theory and Practice. Springer. ISBN   0306464454.
  8. Ylvisaker, N. D. (1965). "The Expected Number of Zeros of a Stationary Gaussian Process". The Annals of Mathematical Statistics. 36 (3): 1043–1046. doi: 10.1214/aoms/1177700077 .
  9. Adler, Robert J.; Taylor, Jonathan E. (2007). "Excursion Probabilities". Random Fields and Geometry. Springer Monographs in Mathematics. pp. 75–76. doi:10.1007/978-0-387-48116-6_4. ISBN   978-0-387-48112-8.