Rio Madeira HVDC system

Last updated
Rio Madeira HVDC system
Rio Madeira HVDC system
Location of Rio Madeira HVDC system
Location
Country Brazil
State Rondônia, São Paulo
Coordinates 08°54′53″S63°57′27″W / 8.91472°S 63.95750°W / -8.91472; -63.95750 (HVDC Rio Madeira - Porto Velho Static Inverter Plant) ( Porto Velho)
21°49′59″S48°20′52″W / 21.83306°S 48.34778°W / -21.83306; -48.34778 (HVDC Rio Madeira - Araraquara Static Inverter Plant) ( Araraquara)
21°37′10″S48°35′24″W / 21.61944°S 48.59000°W / -21.61944; -48.59000 (HVDC Rio Madeira - Araraquara Grounding Electrode of Bipole 1) ( Araraquara)
From Porto Velho, Rondônia
To Araraquara, São Paulo
Construction information
Manufacturer of substations ABB, Alstom Grid
Commissioned2013-2014
Technical information
TypeTransmission
Type of current HVDC
Total length2,375 km (1,476 mi)
Power rating2 x 3150 MW
DC voltage±600 kV
No. of poles4

The Rio Madeira HVDC system is a high-voltage direct current transmission system in Brazil, built to export power from new hydro power plants on the Madeira River in the Amazon Basin to the major load centres of southeastern Brazil. The system consists of two converter stations at Porto Velho in the state of Rondônia and Araraquara in São Paulo state, interconnected by two bipolar ±600 kV DC transmission lines with a capacity of 3,150 megawatts (4,220,000 hp) each. In addition to the converters for the two bipoles, the Porto Velho converter station also includes two 400 MW back-to-back converters to supply power to the local 230 kV AC system. Hence the total export capacity of the Porto Velho station is 7100 MW: 6300 MW from the two bipoles and 800 MW from the two back-to-back converters. When Bipole 1 commenced commercial operation in 2014, Rio Madeira became the world’s longest HVDC line, surpassing the Xiangjiaba–Shanghai system in China. According to the energy research organisation Empresa de Pesquisa Energética (EPE), [1] the length of the line is 2,375 kilometres (1,476 mi).

Contents

Generating plant

The northern (Porto Velho) converter station is connected, via a 500 kV AC collector grid (Coletora Porto Velho), to the new Rio Madeira hydro plant complex. As of January 2013 this consisted of two generating stations: Santo Antônio, close to Porto Velho, with a capacity of 3150 MW, and Jirau, with a capacity of 3750 MW, approximately 100 kilometres (62 mi) away. Both generating plants are of the low-head, so-called run of river type in order to minimise the environmental impact of the project. They use bulb turbines, which are a type of horizontal-axis Kaplan turbine. These have very low inertia compared to other types of hydro-electric generator, and this led to concerns that the turbines could be damaged by over-speed in the event of a sudden interruption to power transmission on the HVDC lines.

Planning of the transmission system

With such a long transmission distance (2375 km), HVDC would seem to be the natural solution for transporting the generated power to the load centres of south-east Brazil, but a very comprehensive techno-economic analysis was nevertheless performed to evaluate the relative benefits of various different solutions. A total of 16 options were initially examined, including three all-DC options at 500 kV, 600 kV and 800 kV, as well as several all-AC options and hybrid DC+AC options. In the end it was concluded that DC, at a transmission voltage of 600 kV (the same as for the Itaipu scheme in southern Brazil) was the preferred option. [2]

Nevertheless, two of the other options (an all-AC option and a hybrid AC+DC option) were also taken forward to the second stage of project planning. Thus there were three options put forward for the final selection: [1]

The winner from the three short-listed options was decided by an auction in November 2008 and proved to be the ±600 kV all-DC option. This option was divided into seven separate packages, referred to as Lots 1–7: [1]

Converter stations

Block diagram of a bipolar system with ground return as used on the two bipoles of the Rio Madeira project. Hvdc bipolar schematic.svg
Block diagram of a bipolar system with ground return as used on the two bipoles of the Rio Madeira project.

The transmission voltage of ±600 kV is the same as was used on the Itaipu project, but for Rio Madeira the converters are designed with only a single twelve-pulse bridge per pole.

The Porto Velho converter station contains the rectifier terminals of the two ±600 kV bipoles, as well as the two 400 MW back-to-back converters. The Bipole 1 converter stations and the two back-to-back converters have been built by ABB [3] and were commissioned in August 2014. [4] The Bipole 2 converter stations been built by Alstom Grid [5] and as at February 2015 are still undergoing commissioning.

All the HVDC converters use air-insulated, water-cooled thyristor valves, suspended from the ceiling of the valve hall and using 125mm diameter thyristors. Both converter stations of Bipole 2 [5] and the Araraquara converter station of Bipole 1 use single-phase, two-winding converter transformers with the thyristor valves arranged in double-valves, but the Porto Velho Bipole 1 converter station used single-phase three-winding converter transformers (because the river made the transport of larger transformers feasible than was the case at Araraquara) and valves arranged in quadrivalves. [3]

Because the 230 kV network in Rondônia and Acre is very weak, the back-to-back converters are implemented as Capacitor Commutated Converters (CCC). The thyristor valves being much smaller than those of the transmission bipoles, it was possible to arrange each back-to-back converter as just three valve stacks of eight valves each (octovalves). [3]

The design of certain aspects of the two bipoles (which were supplied by different manufacturers) needed to be coordinated in order to avoid adverse control interactions or harmonic filtering problems. In addition, a considerable number of different operating modes needed to be taken into account, such as paralleling the converters of both bipoles onto a single transmission line. There is also a requirement for power flow in the south–north direction, although only at a reduced level. These aspects, along with the complex structure of the project with multiple engineering companies involved at the same time, led to some delays in the project.

Related Research Articles

<span class="mw-page-title-main">High-voltage direct current</span> Electric power transmission system

A high-voltage direct current (HVDC) electric power transmission system uses direct current (DC) for electric power transmission, in contrast with the more common alternating current (AC) transmission systems.

<span class="mw-page-title-main">HVDC Cross-Channel</span> Electrical interconnector between the UK and France

The HVDC Cross-Channel is the 73-kilometre-long (45 mi) high-voltage direct current (HVDC) interconnector that has operated since 1986 under the English Channel between the continental European grid at Bonningues-lès-Calais and the British electricity grid at Sellindge. The cable is also known as IFA, and should not be confused with the new IFA-2, another interconnect with France that is three times as long but only half as powerful.

The HVDC Inter-Island link is a 610 km (380 mi) long, 1200 MW high-voltage direct current (HVDC) transmission system connecting the electricity networks of the North Island and South Island of New Zealand together. It is commonly referred to as the Cook Strait cable in the media and in press releases, although the link is much longer than its Cook Strait section. The link is owned and operated by state-owned transmission company Transpower New Zealand.

<span class="mw-page-title-main">Pacific DC Intertie</span> HVDC power line in the United States

The Pacific DC Intertie is an electric power transmission line that transmits electricity from the Pacific Northwest to the Los Angeles area using high voltage direct current (HVDC). The line capacity is 3.1 gigawatts, which is enough to serve two to three million Los Angeles households and represents almost half of the Los Angeles Department of Water and Power (LADWP) electrical system's peak capacity.

<span class="mw-page-title-main">Nelson River DC Transmission System</span> Electric power transmission system

The Nelson River DC Transmission System, also known as the Manitoba Bipole, is an electric power transmission system of three high voltage, direct current lines in Manitoba, Canada, operated by Manitoba Hydro as part of the Nelson River Hydroelectric Project. It is now recorded on the list of IEEE Milestones in electrical engineering. Several records have been broken by successive phases of the project, including the largest mercury-arc valves, the highest DC transmission voltage and the first use of water-cooled thyristor valves in HVDC.

HVDC Kingsnorth was a high-voltage direct-current (HVDC) transmission system connecting Kingsnorth in Kent to two sites in London. It was at one time the only application of the technology of high voltage direct current transmission for the supply of transformer stations in a city, and the first HVDC link to be embedded within an AC system, rather than interconnecting two asynchronous systems. It was also the first HVDC scheme to be equipped with self-tuning harmonic filters and to be controlled with a "Phase Locked Oscillator", a principle which subsequently became standard on all HVDC systems.

<span class="mw-page-title-main">Cahora Bassa (HVDC)</span> HVDC power transmission system

Cahora-Bassa is a separate bipolar HVDC power transmission line between the Cahora Bassa Hydroelectric Generation Station at the Cahora Bassa Dam in Mozambique, and Johannesburg, South Africa.

<span class="mw-page-title-main">Inga–Shaba HVDC</span> Electric power transmission line

The Inga–Shaba EHVDC Intertie is a 1,700 kilometres (1,100 mi)-long high-voltage direct current overhead electric power transmission line in the Democratic Republic of Congo, linking the Inga hydroelectric complex at the mouth of the Congo River to mineral fields in Shaba (Katanga). It was primarily constructed by Morrison-Knudsen International, an American engineering company, with the converter equipment supplied by ASEA. Construction was completed in 1982 and it cost US$900 million. The scheme was, for many years, the longest HVDC line in the world.

The HVDC Itaipu is a High-voltage direct current overhead line transmission system in Brazil from the Itaipu hydroelectric power plant to the region of São Paulo. The project consists of two ±600 kV bipoles, each with a rated power of 3150 MW, which transmit power generated at 50 Hz from the Paraguay side of the Itaipu Dam to the Ibiúna converter station near São Roque, São Paulo. The system was put in service in several steps between 1984 and 1987, and remains among the most important HVDC installations in the world.

<span class="mw-page-title-main">Path 27</span> Electrical transmission line in Southwestern United States

Path 27, also called the Intermountain or the Southern Transmission System (STS), is a high-voltage direct current (HVDC) electrical transmission line running from the coal-fired Intermountain Power Plant near Delta, Utah, to the Adelanto Converter Station at Adelanto, California, in the Southwestern United States. It was installed by Asea, a company based in Sweden, and commercialized in July 1986. The system is designed to carry power generated at the power plant in Utah to areas throughout Southern California. It is owned and operated by the Intermountain Power Agency, a cooperative consisting of six Los Angeles-area cities, the largest member being the Los Angeles Department of Water and Power (LADWP), and 29 smaller Utah municipalities.

<span class="mw-page-title-main">Shin-Shinano Frequency Converter</span> HVDC back-to-back station in Japan

Shin-Shinano Frequency Converter is the designation of a back-to-back high-voltage direct current (HVDC) facility in Japan which forms one of four frequency converter stations that link Japan's western and eastern power grids. The other three stations are at Higashi-Shimizu, Minami-Fukumitsu, and Sakuma Dam.

The Kii Channel HVDC system in Japan is, as of 2012, the highest-capacity high-voltage direct current (HVDC) submarine power cable system in the world to use a single bipole, with a rated power of 1400MW. The cross channel system between England and France has a larger total capacity, but uses two bipoles rated at 1000MW each.

The HVDC Rihand–Delhi is a HVDC connection between Rihand and Dadri in India, put into service in 1990. It connects the 3,000 MW coal-based Rihand Thermal Power Station in Uttar Pradesh to the northern region of India. The project has an 814 kilometres (506 mi) long bipolar overhead line. The transmission voltage is 500 kV and the maximum transmission power is 1,500 megawatts. The project was built by ABB.

<span class="mw-page-title-main">McNeill HVDC Back-to-back station</span> Substation

McNeill HVDC Back-to-back station is an HVDC back-to-back station at 50°35'56"N 110°1'25"W, which interconnects the power grids of the Canadian provinces Alberta and Saskatchewan and went in service in 1989. McNeill HVDC back-to-back station is the most northerly of a series of HVDC interconnectors between the unsynchronised eastern and western AC systems of the United States and Canada. The station, which was built by GEC-Alstom, can transfer a maximum power of 150 MW at a DC voltage of 42 kV. The station is unusual in many respects and contained several firsts for HVDC.

The Vizag back-to-back HVDC station, or Visakhapatnam back-to-back HVDC station, is a back-to-back HVDC connection between the eastern and southern regions in India, located close to the city of Visakhapatnam, and owned by Power Grid Corporation of India.

The Chandrapur back-to-back HVDC station is a back-to-back HVDC connection between the western and southern regions in India, located close to the city of Chandrapur. Its main purpose is to export power from the Chandrapur Super Thermal Power Station to the southern region of the Indian national power grid. It is owned by Power Grid Corporation of India.

The Chandrapur–Padghe HVDC transmission system is an HVDC connection between Chandrapur and Padghe in the state of Maharashtra in India, which was put into service in 1999.

An HVDC converter converts electric power from high voltage alternating current (AC) to high-voltage direct current (HVDC), or vice versa. HVDC is used as an alternative to AC for transmitting electrical energy over long distances or between AC power systems of different frequencies. HVDC converters capable of converting up to two gigawatts (GW) and with voltage ratings of up to 900 kilovolts (kV) have been built, and even higher ratings are technically feasible. A complete converter station may contain several such converters in series and/or parallel to achieve total system DC voltage ratings of up to 1,100 kV.

The Xiangjiaba–Shanghai HVDC system is a ±800 kV, 6400 MW high-voltage direct current transmission system in China. The system was built to export hydro power from Xiangjiaba Dam in Sichuan province, to the major city of Shanghai. Built and owned by State Grid Corporation of China (SGCC), the system became the world’s largest-capacity HVDC system when it was completed in July 2010, although it has already been overtaken by the 7200 MW Jinping–Sunan HVDC scheme which was put into operation in December 2012. It also narrowly missed becoming the world’s first 800 kV HVDC line, with the first pole of the Yunnan–Guangdong project having been put into service 6 months earlier. It was also the world’s longest HVDC line when completed, although that record is also expected to be overtaken early in 2013 with the completion of the first bipole of the Rio Madeira project in Brazil.

Adelanto Converter Station in Adelanto, California, is the southern terminus of the 2,400 MW Path 27 Utah–California high voltage DC power (HVDC) transmission line. The station contains redundant thyristor-based HVDC converters rated for 1,200 MW continuous or 1,600 MW short term overload. The 300-acre (120 ha) station was completed in July, 1986 at a cost of US$131 million. The northern terminus of Path 27 is fossil fueled Intermountain Power Plant in Utah.

References

  1. 1 2 3 Esmeraldo, P.C.V., Araujo, E.M.A., Carvalho, D.S. Jr., HVDC Madeira Transmission System – Planning Development and Final Design, CIGRÉ session, Paris, 2010, Paper B4-306.
  2. Esmeraldo, P.C.V., Carijó, L., Vidigal, S., Carvalho, A.R.C.D., Araujo, E., Sereno, M.G., Souza, D., Macedo, N., Leite, A., Simões, V., Menzies, D.F., Feasibility studies for Madeira transmission system: technical and economics analysis, CIGRÉ session, Paris, 2008, Paper B4-103.
  3. 1 2 3 Graham, J.F., Holmgren, T., Fischer, P., Shore, N.L., The Rio Madeira HVDC System – Design aspects of Bipole 1 and the connector to Acre-Rondônia, CIGRÉ session, Paris, 2012, Paper B4-111.
  4. ABB Press Release ABB commissions world’s longest power transmission link in Brazil, 27 August 2014
  5. 1 2 MacLeod, N.M., Chackravorty, S., Barrett, B.T., Design studies for the 3150 MW, ± 600 kV UHVDC Bipole 2 of the Rio Madeira long distance transmission project in Brazil, CIGRÉ session, Paris, 2010, Paper B4-208.