Robert Glaeser

Last updated
Robert Martin Glaeser
Born (1937-07-20) July 20, 1937 (age 87)
Alma mater University of California, Berkeley
University of Wisconsin – Madison
Known fordevelopment of cryo-EM
Scientific career
Institutions University of California, Berkeley
Lawrence Berkeley National Laboratory
Website http://mcb.berkeley.edu/faculty/all/glaeserr

Robert Martin Glaeser (born July 20, 1937) is an American biochemist. He is a professor emeritus of Biochemistry, Biophysics and Structural Biology at the University of California, Berkeley and a faculty scientist at Lawrence Berkeley National Laboratory, in Berkeley, California, US. His main research area is electron diffraction and membrane models.

Glaeser is known [1] for his pioneering work in cryogenic electron microscopy (cryo-EM), where he established how radiation damage was a limiting factor for imaging resolution [2] and how freezing hydrated specimens allowed for more tolerance to radiation damage. [3] He also pushed electron imaging microscopy resolution and contrast by studying the effect of beam-induced movement on the resolution [4] and developed methods for weak-phase imaging. [5]

Glaeser studied at the University of Wisconsin – Madison (B.A. 1959) and the University of California, Berkeley (Ph.D. 1964). He was then a postdoc at the University of Oxford (1963/64) and University of Chicago (1964/65). In 1988/89 he was a visiting scientist at the Max Planck Institute for Biochemistry (MPIB) in Martinsried near Munich, and later a professor at the University of California, Berkeley.

Awards

Related Research Articles

<span class="mw-page-title-main">Electron microscope</span> Type of microscope with electrons as a source of illumination

An electron microscope is a microscope that uses a beam of electrons as a source of illumination. They use electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing them to produce magnified images or electron diffraction patterns. As the wavelength of an electron can be up to 100,000 times smaller than that of visible light, electron microscopes have a much higher resolution of about 0.1 nm, which compares to about 200 nm for light microscopes. Electron microscope may refer to:

<span class="mw-page-title-main">Glenn T. Seaborg</span> American chemist (1912–1999)

Glenn Theodore Seaborg was an American chemist whose involvement in the synthesis, discovery and investigation of ten transuranium elements earned him a share of the 1951 Nobel Prize in Chemistry. His work in this area also led to his development of the actinide concept and the arrangement of the actinide series in the periodic table of the elements.

<span class="mw-page-title-main">Microscopy</span> Viewing of objects which are too small to be seen with the naked eye

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

<span class="mw-page-title-main">Scanning electron microscope</span> Electron microscope where a small beam is scanned across a sample

A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that contain information about the surface topography and composition of the sample. The electron beam is scanned in a raster scan pattern, and the position of the beam is combined with the intensity of the detected signal to produce an image. In the most common SEM mode, secondary electrons emitted by atoms excited by the electron beam are detected using a secondary electron detector. The number of secondary electrons that can be detected, and thus the signal intensity, depends, among other things, on specimen topography. Some SEMs can achieve resolutions better than 1 nanometer.

<span class="mw-page-title-main">Cathodoluminescence</span> Photon emission under the impact of an electron beam

Cathodoluminescence is an optical and electromagnetic phenomenon in which electrons impacting on a luminescent material such as a phosphor, cause the emission of photons which may have wavelengths in the visible spectrum. A familiar example is the generation of light by an electron beam scanning the phosphor-coated inner surface of the screen of a television that uses a cathode ray tube. Cathodoluminescence is the inverse of the photoelectric effect, in which electron emission is induced by irradiation with photons.

<span class="mw-page-title-main">Albert Ghiorso</span> American nuclear scientist

Albert Ghiorso was an American nuclear scientist and co-discoverer of a record 12 chemical elements on the periodic table. His research career spanned six decades, from the early 1940s to the late 1990s.

<span class="mw-page-title-main">Transmission electron microscopy</span> Imaging and diffraction using electrons that pass through samples

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a detector such as a scintillator attached to a charge-coupled device or a direct electron detector.

Photoemission electron microscopy is a type of electron microscopy that utilizes local variations in electron emission to generate image contrast. The excitation is usually produced by ultraviolet light, synchrotron radiation or X-ray sources. PEEM measures the coefficient indirectly by collecting the emitted secondary electrons generated in the electron cascade that follows the creation of the primary core hole in the absorption process. PEEM is a surface sensitive technique because the emitted electrons originate from a shallow layer. In physics, this technique is referred to as PEEM, which goes together naturally with low-energy electron diffraction (LEED), and low-energy electron microscopy (LEEM). In biology, it is called photoelectron microscopy (PEM), which fits with photoelectron spectroscopy (PES), transmission electron microscopy (TEM), and scanning electron microscopy (SEM).

<span class="mw-page-title-main">X-ray microscope</span> Type of microscope that uses X-rays

An X-ray microscope uses electromagnetic radiation in the X-ray band to produce magnified images of objects. Since X-rays penetrate most objects, there is no need to specially prepare them for X-ray microscopy observations.

<span class="mw-page-title-main">Scanning transmission electron microscopy</span> Scanning microscopy using thin samples and transmitted electrons

A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused to a fine spot which is then scanned over the sample in a raster illumination system constructed so that the sample is illuminated at each point with the beam parallel to the optical axis. The rastering of the beam across the sample makes STEM suitable for analytical techniques such as Z-contrast annular dark-field imaging, and spectroscopic mapping by energy dispersive X-ray (EDX) spectroscopy, or electron energy loss spectroscopy (EELS). These signals can be obtained simultaneously, allowing direct correlation of images and spectroscopic data.

<span class="mw-page-title-main">Transmission electron cryomicroscopy</span>

Transmission electron cryomicroscopy (CryoTEM), commonly known as cryo-EM, is a form of cryogenic electron microscopy, more specifically a type of transmission electron microscopy (TEM) where the sample is studied at cryogenic temperatures. Cryo-EM, specifically 3-dimensional electron microscopy (3DEM), is gaining popularity in structural biology.

<span class="mw-page-title-main">Focused ion beam</span> Device

Focused ion beam, also known as FIB, is a technique used particularly in the semiconductor industry, materials science and increasingly in the biological field for site-specific analysis, deposition, and ablation of materials. A FIB setup is a scientific instrument that resembles a scanning electron microscope (SEM). However, while the SEM uses a focused beam of electrons to image the sample in the chamber, a FIB setup uses a focused beam of ions instead. FIB can also be incorporated in a system with both electron and ion beam columns, allowing the same feature to be investigated using either of the beams. FIB should not be confused with using a beam of focused ions for direct write lithography. These are generally quite different systems where the material is modified by other mechanisms.

<span class="mw-page-title-main">Magnetic resonance microscopy</span>

Magnetic resonance microscopy is magnetic resonance imaging (MRI) at a microscopic level down to the scale of microns. The first definition of MRM was MRI having voxel resolutions of better than 100 μm.

An X-ray microscope uses electromagnetic radiation in the soft X-ray band to produce images of very small objects.

<span class="mw-page-title-main">Eva Nogales</span> Biophysicist, professor

Eva Nogales is a Spanish-American biophysicist at the Lawrence Berkeley National Laboratory and a professor at the University of California, Berkeley, where she served as head of the Division of Biochemistry, Biophysics and Structural Biology of the Department of Molecular and Cell Biology (2015–2020). She is a Howard Hughes Medical Institute investigator.

<span class="mw-page-title-main">Ptychography</span> Method of microscopic imaging

Ptychography is a computational method of microscopic imaging. It generates images by processing many coherent interference patterns that have been scattered from an object of interest. Its defining characteristic is translational invariance, which means that the interference patterns are generated by one constant function moving laterally by a known amount with respect to another constant function. The interference patterns occur some distance away from these two components, so that the scattered waves spread out and "fold" into one another as shown in the figure.

<span class="mw-page-title-main">Scanning transmission X-ray microscopy</span>

Scanning transmission X-ray microscopy (STXM) is a type of X-ray microscopy in which a zone plate focuses an X-ray beam onto a small spot, a sample is scanned in the focal plane of the zone plate and the transmitted X-ray intensity is recorded as a function of the sample position. A stroboscopic scheme is used where the excitation is the pump and the synchrotron X-ray flashes are the probe. X-ray microscopes work by exposing a film or charged coupled device detector to detect X-rays that pass through the specimen. The image formed is of a thin section of specimen. Newer X-ray microscopes use X-ray absorption spectroscopy to heterogeneous materials at high spatial resolution. The essence of the technique is a combination of spectromicroscopy, imaging with spectral sensitivity, and microspectroscopy, recording spectra from very small spots.

Ralph Arthur James was an American chemist at the University of Chicago who co-discovered the elements curium (1944) and americium (1944–1945). Later he worked at UCLA and for the Lawrence Livermore laboratory in California.

<span class="mw-page-title-main">Joachim Frank</span> German-born American biophysicist and Nobel laureate (born 1940)

Joachim Frank ; born September 12, 1940) is a German-American biophysicist at Columbia University and a Nobel laureate. He is regarded as the founder of single-particle cryo-electron microscopy (cryo-EM), for which he shared the Nobel Prize in Chemistry in 2017 with Jacques Dubochet and Richard Henderson. He also made significant contributions to structure and function of the ribosome from bacteria and eukaryotes.

<span class="mw-page-title-main">Cryogenic electron microscopy</span> Form of transmission electron microscopy (TEM)

Cryogenic electron microscopy (cryo-EM) is a cryomicroscopy technique applied on samples cooled to cryogenic temperatures. For biological specimens, the structure is preserved by embedding in an environment of vitreous ice. An aqueous sample solution is applied to a grid-mesh and plunge-frozen in liquid ethane or a mixture of liquid ethane and propane. While development of the technique began in the 1970s, recent advances in detector technology and software algorithms have allowed for the determination of biomolecular structures at near-atomic resolution. This has attracted wide attention to the approach as an alternative to X-ray crystallography or NMR spectroscopy for macromolecular structure determination without the need for crystallization.

References

  1. Lifetime Achievement Awardee – Robert Martin Glaeser – Berkeley Lab
  2. Glaeser, Robert M. (1971). "Limitations to Significant Information in Biological Electron Microscopy as a Result of Radiation Damage". Journal of Ultrastructure Research. 36 (3–4): 466–482. doi:10.1016/S0022-5320(71)80118-1. PMID   5107051.
  3. Glaeser, Robert M.; Taylor, Kenneth A. (1978). "Radiation-Damage Relative to Transmission Electron-Microscopy of Biological Specimens at Low-Temperature". Journal of Microscopy. 112 (1): 127–138. doi:10.1111/j.1365-2818.1978.tb01160.x. PMID   347079. S2CID   45670974.
  4. Henderson, Richard; Glaeser, Robert M. (1985). "Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals". Ultramicroscopy. 16 (2): 139–150. doi:10.1016/0304-3991(85)90069-5.
  5. Glaeser, R. M. (2013). "Methods for imaging weak-phase objects in electron microscopy". The Review of Scientific Instruments. 84 (11): 111101. doi:10.1063/1.4830355. PMC   3855062 . PMID   24289381.
  6. Berkeley Lab Director’s Awards for Lifetime Achievement
  7. 2018 medalists – Glenn T. Seaborg Medal
  8. Robert Glaeser – National Academy of Science