Robert Webster (virologist)

Last updated

Robert Gordon Webster
Born (1932-07-05) 5 July 1932 (age 91)
Balclutha, New Zealand
Alma mater University of Otago
Australian National University
Scientific career
Fields Virology
Institutions St. Jude Children's Research Hospital

Robert Gordon Webster (b. 1932) is an avian influenza authority who correctly posited that pandemic strains of flu arise from genes in flu virus strains in nonhumans; for example, via a reassortment of genetic segments (antigenic shift) between viruses in humans and nonhumans (especially birds) rather than by mutations (antigenic drift) in annual human flu strains. [1]

Contents

Background

Robert Webster was born on 5 July 1932 in Balclutha, New Zealand, and grew up on a farm. [2] He studied microbiology on leaving school, gaining his BSc from University of Otago, New Zealand in 1955, his MSc at the same university in 1957, and his PhD from the Australian National University, Canberra, Australia, in 1962.

He worked as a virologist with the New Zealand Department of Agriculture in 1958 - 1959 before being appointed research fellow at the Department of Microbiology at ANU's John Curtin Medical School, for 1964 - 1966. He moved to U.S. in 1969 where he became a member of both the Department of Microbiology and the Department of Immunology at the St. Jude Children's Research Hospital in Memphis, Tennessee, a city where he has lived ever since and has held many research posts.

Accomplishments

Webster holds the Rose Marie Thomas Chair in Virology at St. Jude Children's Research Hospital. He is also director of the World Health Organization Collaborating Center on the Ecology of Influenza Viruses in Lower Animals and Birds, the world's only laboratory designed to study influenza at the animal-human interface. He is a Fellow of the Royal Society of London, the Royal Society of Medicine and the Royal Society of New Zealand, and a member of the National Academy of Sciences of the United States. In December 2002, he was presented with the Bristol-Myers Squibb Award for Distinguished Achievement in Infectious Diseases Research. [3]

Webster has been awarded membership of the National Academy of Sciences of the United States of America, and has been named a fellow of the Royal Society Te Apārangi and the Royal Society of London. He is also a member of the American Society for Microbiology, American Society for Virology, and the American Association for the Advancement of Science, and is a fellow of the Royal Society of Medicine. He heads the World Health Organization (WHO) collaborating laboratory on animal influenza.[ citation needed ]

Work on general influenza

Webster's major discoveries relating to influenza include the likelihood that avians were most likely the culprit in other flu outbreaks. His work is also responsible for the method of human influenza vaccination that is commonly used. Before Webster and his colleagues separated the influenza virus into different particles, the entire influenza virus was injected into a patient as a vaccine - now, only certain parts of the virus are used to create the same response, lessening side effects of the vaccine. [2]

H5N1 Work

Webster's work with the avian flu began after a beach walk with fellow researcher Graeme Laver, on which the men noticed a large number of dead birds along the shoreline. Webster wondered whether it was possible that the birds had died from the avian flu, and subsequently traveled to an island to take samples from hundreds of birds. This led to more trips, and eventually Webster discovered a link between the avian flu and the human flu. He deduced that it is possible for the avian and human viruses to combine, creating a new virus that humans would have no antibodies to. [2] In an interview with NBC, he said that when he first proposed this link, few paid attention to what he saw as a great danger. [4] However, Webster theorizes that the only event that has to occur to begin a flu pandemic is the mixing of avian and human flu strains in the same mammalian cell - most likely in a pig. Pigs are similar enough in genetic makeup to humans that they are susceptible to the human flu; also, in many areas, pigs come in close contact with chickens or ducks, making it likely that they will catch the avian flu. [2]

Another danger that Webster has uncovered is the duck. Ducks, while capable of catching and transmitting the avian flu virus through contact with chickens, seldom sicken and die from the exposure. Being alive and quite healthy, the ducks are then capable of spreading the virus to other areas. [2]

Honors and awards

Sources

  1. Mandavilli, Apoorva (1 December 2003). "Profile: Robert Webster". Nature Medicine. 9 (12): 1445. doi: 10.1038/nm1203-1445 . ISSN   1546-170X. S2CID   28937372.
  2. 1 2 3 4 5 "The Flu Hunter" Rosenwald, Michael. Smithsonian. January 2006. Page 36.
  3. Avila, Jim; Ramsey, Meredith (15 March 2006). "Renowned Bird Flu Expert Warns: Be Prepared". ABC News. Retrieved 11 September 2020.
  4. science, Robert Bazell Chief; News, health correspondent NBC (12 October 2005). "The man who discovered the bird flu threat". msnbc.com. Retrieved 11 September 2020.{{cite web}}: |last2= has generic name (help)
  5. "Lists of Royal Society Fellows 1660-2007". London: The Royal Society. Archived from the original on 24 March 2010. Retrieved 13 August 2010.
  6. "The Leeuwenhoek Lecture (1948)". The Royal Society. Retrieved 13 August 2010.

Related Research Articles

<i>Influenza A virus</i> Species of virus

Influenza A virus (IAV) is a pathogen that causes the flu in birds and some mammals, including humans. It is an RNA virus whose subtypes have been isolated from wild birds. Occasionally, it is transmitted from wild to domestic birds, and this may cause severe disease, outbreaks, or human influenza pandemics.

<span class="mw-page-title-main">Avian influenza</span> Influenza caused by viruses adapted to birds

Avian influenza, also known as avian flu, is a bird flu caused by the influenza A virus, which can infect people. It is similar to other types of animal flu in that it is caused by a virus strain that has adapted to a specific host. The type with the greatest risk is highly pathogenic avian influenza (HPAI).

<span class="mw-page-title-main">Antigenic shift</span> Process by which two or more different strains of a virus combine to form a new subtype

Antigenic shift is the process by which two or more different strains of a virus, or strains of two or more different viruses, combine to form a new subtype having a mixture of the surface antigens of the two or more original strains. The term is often applied specifically to influenza, as that is the best-known example, but the process is also known to occur with other viruses, such as visna virus in sheep. Antigenic shift is a specific case of reassortment or viral shift that confers a phenotypic change.

<i>Orthomyxoviridae</i> Family of RNA viruses including the influenza viruses

Orthomyxoviridae is a family of negative-sense RNA viruses. It includes seven genera: Alphainfluenzavirus, Betainfluenzavirus, Gammainfluenzavirus, Deltainfluenzavirus, Isavirus, Thogotovirus, and Quaranjavirus. The first four genera contain viruses that cause influenza in birds and mammals, including humans. Isaviruses infect salmon; the thogotoviruses are arboviruses, infecting vertebrates and invertebrates. The Quaranjaviruses are also arboviruses, infecting vertebrates (birds) and invertebrates (arthropods).

<span class="mw-page-title-main">Influenza A virus subtype H5N1</span> Subtype of influenza A virus

Influenza A virus subtype H5N1 (A/H5N1) is a subtype of the influenza A virus which can cause illness in humans and many other species. A bird-adapted strain of H5N1, called HPAI A(H5N1) for highly pathogenic avian influenza virus of type A of subtype H5N1, is the highly pathogenic causative agent of H5N1 flu, commonly known as avian influenza. It is enzootic in many bird populations, especially in Southeast Asia. One strain of HPAI A(H5N1) is spreading globally after first appearing in Asia. It is epizootic and panzootic, killing tens of millions of birds and spurring the culling of hundreds of millions of others to stem its spread. Many references to "bird flu" and H5N1 in the popular media refer to this strain.

<span class="mw-page-title-main">Swine influenza</span> Infection caused by influenza viruses endemic to pigs

Swine influenza is an infection caused by any of several types of swine influenza viruses. Swine influenza virus (SIV) or swine-origin influenza virus (S-OIV) refers to any strain of the influenza family of viruses that is endemic in pigs. As of 2009, identified SIV strains include influenza C and the subtypes of influenza A known as H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3.

<span class="mw-page-title-main">Influenza A virus subtype H2N2</span> Subtype of Influenza A virus

Influenza A virus subtype H2N2 (A/H2N2) is a subtype of Influenza A virus. H2N2 has mutated into various strains including the "Asian flu" strain, H3N2, and various strains found in birds. It is also suspected of causing a human pandemic in 1889. The geographic spreading of the 1889 Russian flu has been studied and published.

<span class="mw-page-title-main">Influenza A virus subtype H3N2</span> Virus subtype

Influenza A virus subtype H3N2 (A/H3N2) is a subtype of viruses that causes influenza (flu). H3N2 viruses can infect birds and mammals. In birds, humans, and pigs, the virus has mutated into many strains. In years in which H3N2 is the predominant strain, there are more hospitalizations.

<span class="mw-page-title-main">Transmission and infection of H5N1</span> Spread of an influenza virus

Transmission and infection of H5N1 from infected avian sources to humans has been a concern since the first documented case of human infection in 1997, due to the global spread of H5N1 that constitutes a pandemic threat.

<span class="mw-page-title-main">Influenza A virus subtype H5N2</span> Virus subtype

H5 N2 is a subtype of the species Influenzavirus A. The subtype infects a wide variety of birds, including chickens, ducks, turkeys, falcons, and ostriches. Affected birds usually do not appear ill, and the disease is often mild as avian influenza viral subtypes go. Some variants of the subtype are much more pathogenic than others, and outbreaks of "high-path" H5N2 result in the culling of thousands of birds in poultry farms from time to time. It appears that people who work with birds can be infected by the virus, but suffer hardly any noticeable health effects. Even people exposed to the highly pathogenic H5N2 variety that killed ostrich chicks in South Africa only seem to have developed conjunctivitis, or a perhaps a mild respiratory illness. There is no evidence of human-to-human spread of H5N2. On November 12, 2005 it was reported that a falcon was found to have H5N2.

<span class="mw-page-title-main">Influenza Genome Sequencing Project</span>

The Influenza Genome Sequencing Project (IGSP), initiated in early 2004, seeks to investigate influenza evolution by providing a public data set of complete influenza genome sequences from collections of isolates representing diverse species distributions.

<span class="mw-page-title-main">H5N1 genetic structure</span>

H5N1 genetic structure is the molecular structure of the H5N1 virus's RNA.

<span class="mw-page-title-main">Spanish flu research</span> Scientific research of the 1918 influenza pandemic

Spanish flu research concerns studies regarding the causes and characteristics of the Spanish flu, a variety of influenza that in 1918 was responsible for the worst influenza pandemic in modern history. Many theories about the origins and progress of the Spanish flu persisted in the literature, but it was not until 2005, when various samples of lung tissue were recovered from American World War I soldiers and from an Inupiat woman buried in permafrost in a mass grave in Brevig Mission, Alaska, that significant genetic research was made possible.

<span class="mw-page-title-main">Fujian flu</span> Strains of influenza

Fujian flu refers to flu caused by either a Fujian human flu strain of the H3N2 subtype of the Influenza A virus or a Fujian bird flu strain of the H5N1 subtype of the Influenza A virus. These strains are named after Fujian, a coastal province in Southeast China.

<span class="mw-page-title-main">Influenza</span> Infectious disease, often just "the flu"

Influenza, commonly known as "the flu" or just "flu", is an infectious disease caused by influenza viruses. Symptoms range from mild to severe and often include fever, runny nose, sore throat, muscle pain, headache, coughing, and fatigue. These symptoms begin from one to four days after exposure to the virus and last for about 2–8 days. Diarrhea and vomiting can occur, particularly in children. Influenza may progress to pneumonia, which can be caused by the virus or by a subsequent bacterial infection. Other complications of infection include acute respiratory distress syndrome, meningitis, encephalitis, and worsening of pre-existing health problems such as asthma and cardiovascular disease.

<span class="mw-page-title-main">Pandemic H1N1/09 virus</span> Virus responsible for the 2009 swine flu pandemic

The pandemic H1N1/09 virus is a swine origin influenza A virus subtype H1N1 strain that was responsible for the 2009 swine flu pandemic. This strain is often called swine flu by the public media. For other names, see the Nomenclature section below.

<span class="mw-page-title-main">H5N1 vaccine</span> Vaccine designed to provide immunity against H5N1 influenza

A H5N1 vaccine is an influenza vaccine intended to provide immunization to influenza A virus subtype H5N1.

Chen Hualan is a Chinese veterinary virologist best known for researching animal epidemic diseases. She is a member of the World Organisation for Animal Health (OIE) and a member of the Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). She is now a researcher and PhD Supervisor at Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences.

This is a timeline of influenza, briefly describing major events such as outbreaks, epidemics, pandemics, discoveries and developments of vaccines. In addition to specific year/period-related events, there is the seasonal flu that kills between 250,000 and 500,000 people every year and has claimed between 340 million and 1 billion human lives throughout history.

<span class="mw-page-title-main">Hélio Gelli Pereira</span> Brazilian-British virologist

Hélio Gelli Pereira was a Brazilian-British virologist specialising in adenoviruses. Pereira was a co-recipient of the 1988 UNESCO Carlos J. Finlay Prize for Microbiology and was known for his work on the book, Viruses of Vertebrates. He contributed to several areas of virology in research and international public service.