Gilbert George Lonzarich

Last updated

Gilbert "Gil" George Lonzarich (born 1945) [1] is a solid-state physicist who works at the Cavendish Laboratory at the University of Cambridge. He is particularly noted for his work on superconducting and magnetic materials.

Contents

Life

Lonzarich received his BA degree from University of California, Berkeley (1967), his M.S. from the University of Minnesota (1970) and his Ph.D. degree from University of British Columbia (1973). Starting as a postdoc, he has held positions at the University of Cambridge. Since 1997 he is a professor at the Cavendish Laboratory, where he heads the quantum matter group. [2]

Research

The research of Lonzarich focuses on solids where the interaction between electrons can lead to unconventional states of matter. His work has addressed different material classes, including itinerant magnets (such as MnSi), [3] heavy-fermion materials, [4] [5] and ferroelectrics. [6] One groundbreaking result for the field of unconventional superconductivity was the demonstration that the suppression of antiferromagnetic order in heavy-fermion materials, i.e. a quantum-critical point, can induce superconductivity. [4]

Important aspects of the experiments of Lonzarich's group are crystal growth, ultra-low temperatures (mK temperatures), high-pressure experiments, and quantum oscillations (continuing the work of David Shoenberg). [7]

Notable former students in the group of Lonzarich include Piers Coleman, Louis Taillefer, [5] Andrew MacKenzie, and Christian Pfleiderer. [3] [7]

Awards

Related Research Articles

<span class="mw-page-title-main">BCS theory</span> Microscopic theory of superconductivity

BCS theory or Bardeen–Cooper–Schrieffer theory is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes superconductivity as a microscopic effect caused by a condensation of Cooper pairs. The theory is also used in nuclear physics to describe the pairing interaction between nucleons in an atomic nucleus.

<span class="mw-page-title-main">Condensed matter physics</span> Branch of physics dealing with a property of matter

Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong interactions among them. More exotic condensed phases include the superconducting phase exhibited by certain materials at extremely low cryogenic temperature, the ferromagnetic and antiferromagnetic phases of spins on crystal lattices of atoms, and the Bose–Einstein condensate found in ultracold atomic systems. Condensed matter physicists seek to understand the behavior of these phases by experiments to measure various material properties, and by applying the physical laws of quantum mechanics, electromagnetism, statistical mechanics, and other physics theories to develop mathematical models.

<span class="mw-page-title-main">Superconductivity</span> Electrical conductivity with exactly zero resistance

Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source.

Unconventional superconductors are materials that display superconductivity which does not conform to conventional BCS theory or its extensions.

<span class="mw-page-title-main">Heike Kamerlingh Onnes</span> Dutch physicist, Nobel prize winner (1853–1926)

Heike Kamerlingh Onnes was a Dutch physicist and Nobel laureate. He exploited the Hampson–Linde cycle to investigate how materials behave when cooled to nearly absolute zero and later to liquefy helium for the first time, in 1908. He also discovered superconductivity in 1911.

<span class="mw-page-title-main">Liquid helium</span> Liquid state of the element helium

Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity.

<span class="mw-page-title-main">History of superconductivity</span>

Superconductivity is the phenomenon of certain materials exhibiting zero electrical resistance and the expulsion of magnetic fields below a characteristic temperature. The history of superconductivity began with Dutch physicist Heike Kamerlingh Onnes's discovery of superconductivity in mercury in 1911. Since then, many other superconducting materials have been discovered and the theory of superconductivity has been developed. These subjects remain active areas of study in the field of condensed matter physics.

A quantum critical point is a point in the phase diagram of a material where a continuous phase transition takes place at absolute zero. A quantum critical point is typically achieved by a continuous suppression of a nonzero temperature phase transition to zero temperature by the application of a pressure, field, or through doping. Conventional phase transitions occur at nonzero temperature when the growth of random thermal fluctuations leads to a change in the physical state of a system. Condensed matter physics research over the past few decades has revealed a new class of phase transitions called quantum phase transitions which take place at absolute zero. In the absence of the thermal fluctuations which trigger conventional phase transitions, quantum phase transitions are driven by the zero point quantum fluctuations associated with Heisenberg's uncertainty principle.

In solid-state physics, heavy fermion materials are a specific type of intermetallic compound, containing elements with 4f or 5f electrons in unfilled electron bands. Electrons are one type of fermion, and when they are found in such materials, they are sometimes referred to as heavy electrons. Heavy fermion materials have a low-temperature specific heat whose linear term is up to 1000 times larger than the value expected from the free electron model. The properties of the heavy fermion compounds often derive from the partly filled f-orbitals of rare-earth or actinide ions, which behave like localized magnetic moments. The name "heavy fermion" comes from the fact that the fermion behaves as if it has an effective mass greater than its rest mass. In the case of electrons, below a characteristic temperature (typically 10 K), the conduction electrons in these metallic compounds behave as if they had an effective mass up to 1000 times the free particle mass. This large effective mass is also reflected in a large contribution to the resistivity from electron-electron scattering via the Kadowaki–Woods ratio. Heavy fermion behavior has been found in a broad variety of states including metallic, superconducting, insulating and magnetic states. Characteristic examples are CeCu6, CeAl3, CeCu2Si2, YbAl3, UBe13 and UPt3.

<span class="mw-page-title-main">122 iron arsenide</span>

The 122 iron arsenide unconventional superconductors are part of a new class of iron-based superconductors. They form in the tetragonal I4/mmm, ThCr2Si2 type, crystal structure. The shorthand name "122" comes from their stoichiometry; the 122s have the chemical formula AEFe2Pn2, where AE stands for alkaline earth metal (Ca, Ba, Sr or Eu) and Pn is pnictide (As, P, etc.). These materials become superconducting under pressure and also upon doping. The maximum superconducting transition temperature found to date is 38 K in the Ba0.6K0.4Fe2As2. The microscopic description of superconductivity in the 122s is yet unclear.

<span class="mw-page-title-main">Piers Coleman</span> British-American physicist

Piers Coleman is a British-born theoretical physicist, working in the field of theoretical condensed matter physics. Coleman is professor of physics at Rutgers University in New Jersey and at Royal Holloway, University of London.

Heavy fermion superconductors are a type of unconventional superconductor.

In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order.

<span class="mw-page-title-main">Quantum oscillations</span>

In condensed matter physics, quantum oscillations describes a series of related experimental techniques used to map the Fermi surface of a metal in the presence of a strong magnetic field. These techniques are based on the principle of Landau quantization of Fermions moving in a magnetic field. For a gas of free fermions in a strong magnetic field, the energy levels are quantized into bands, called the Landau levels, whose separation is proportional to the strength of the magnetic field. In a quantum oscillation experiment, the external magnetic field is varied, which causes the Landau levels to pass over the Fermi surface, which in turn results in oscillations of the electronic density of states at the Fermi level; this produces oscillations in the many material properties which depend on this, including resistance, Hall resistance, and magnetic susceptibility. Observation of quantum oscillations in a material is considered a signature of Fermi liquid behaviour.

CeCoIn5 ("Cerium-Cobalt-Indium 5") is a heavy-fermion superconductor with a layered crystal structure, with somewhat two-dimensional electronic transport properties. The critical temperature of 2.3 K is the highest among all of the Ce-based heavy-fermion superconductors.

<span class="mw-page-title-main">Chiral magnetic effect</span>

Chiral magnetic effect (CME) is the generation of electric current along an external magnetic field induced by chirality imbalance. Fermions are said to be chiral if they keep a definite projection of spin quantum number on momentum. The CME is a macroscopic quantum phenomenon present in systems with charged chiral fermions, such as the quark–gluon plasma, or Dirac and Weyl semimetals. The CME is a consequence of chiral anomaly in quantum field theory; unlike conventional superconductivity or superfluidity, it does not require a spontaneous symmetry breaking. The chiral magnetic current is non-dissipative, because it is topologically protected: the imbalance between the densities of left-handed and right-handed chiral fermions is linked to the topology of fields in gauge theory by the Atiyah-Singer index theorem.

UPd2Al3 is a heavy-fermion superconductor with a hexagonal crystal structure and critical temperature Tc=2.0K that was discovered in 1991. Furthermore, UPd2Al3 orders antiferromagnetically at TN=14K, and UPd2Al3 thus features the unusual behavior that this material, at temperatures below 2K, is simultaneously superconducting and magnetically ordered. Later experiments demonstrated that superconductivity in UPd2Al3 is magnetically mediated, and UPd2Al3 therefore serves as a prime example for non-phonon-mediated superconductors.

Pengcheng Dai is a Chinese American experimental physicist and academic. He is the Sam and Helen Worden Professor of Physics in the Department of Physics and Astronomy at Rice University.

Elbio Rubén Dagotto is an Argentinian-American theoretical physicist and academic. He is a distinguished professor in the department of physics and astronomy at the University of Tennessee, Knoxville, and Distinguished Scientist in the Materials Science and Technology Division at the Oak Ridge National Laboratory.

In physics, the Matthias rules refers to a historical set of empirical guidelines on how to find superconductors. These rules were authored Bernd T. Matthias who discovered hundreds of superconductors using these principles in the 1950s and 1960s. Deviations from these rules have been found since the end of the 1970s with the discovery of unconventional superconductors.

References

  1. 1 2 "Preisverleihungen 1991". Phys. Bl. 47: 230. 1991. doi: 10.1002/phbl.19910470317 .
  2. 1 2 3 4 "Department of Physics, Cavendish Laboratory". University of Cambridge, Department of Physics. Retrieved 25 January 2017.
  3. 1 2 Pfleiderer, C.; McMullan, G.J.; Julian, S.R.; Lonzarich, G.G. (1997). "Magnetic quantum phase transition in MnSi under hydrostatic pressure". Phys. Rev. B. 55 (13): 8330–8338. Bibcode:1997PhRvB..55.8330P. doi:10.1103/PhysRevB.55.8330.
  4. 1 2 Mathur, N.D.; Grosche, F.M.; Julian, S.R.; Walker, I.R.; Freye, D.M.; Haselwimmer, R.K.W.; Lonzarich, G.G. (1998). "Magnetically mediated superconductivity in heavy fermion compounds". Nature. 394 (6688): 39–43. Bibcode:1998Natur.394...39M. doi:10.1038/27838. S2CID   52837444.
  5. 1 2 Taillefer, L.; Lonzarich, G.G. (1988). "Heavy-fermion quasiparticles in UPt3". Phys. Rev. Lett. 60 (15): 1570–1573. Bibcode:1988PhRvL..60.1570T. doi:10.1103/PhysRevLett.60.1570. PMID   10038074.
  6. Rowley, S.E.; Spalek, L.J.; Smith, R.P.; Dean, M.P.M.; Itoh, M.; Scott, J.F.; Lonzarich, G.G.; Saxena, S.S. (2014). "Ferroelectric quantum criticality". Nature Physics. 10 (5): 367–372. arXiv: 0903.1445 . Bibcode:2014NatPh..10..367R. doi:10.1038/nphys2924. S2CID   120096268.
  7. 1 2 Gibney, E. (2017). "A quantum pioneer unlocks matter's hidden secrets". Nature. 549 (7673): 448–450. Bibcode:2017Natur.549..448G. doi: 10.1038/549448a .
  8. "Kamerlingh Onnes Prize". M2S Conference 2015. Archived from the original on 10 October 2018. Retrieved 25 January 2017.