Robot as a service

Last updated

Robot as a service or robotics as a service (RaaS) is a cloud computing unit that facilitates the seamless integration of robot and embedded devices into Web and cloud computing environment. In terms of service-oriented architecture (SOA), a RaaS unit includes services for performing functionality, a service directory for discovery and publishing, and service clients for user's direct access. [1] [2] The current RaaS implementation facilitates SOAP and RESTful communications between RaaS units and the other cloud computing units. Hardware support and standards are available to support RaaS implementation. Devices Profile for Web Services (DPWS) defines implementation constraints to enable secure Web Service messaging, discovery, description, and eventing on resource-constrained devices between Web services and devices.

Contents

RaaS can be considered a unit of the Internet of Things (IoT), Internet of Intelligent Things (IoIT) that deal with intelligent devices that have adequate computing capacity, [3] Cyber-physical system (CPS) that is a combination of a large computational and communication core and physical elements that can interact with the physical world, [4] and Autonomous decentralized system (ADS) whose components are designed to operate in a loosely coupled manner and data are shared through a content-oriented protocol. [5] [6]

The more common usage of the term Robot as a Service (RaaS), is as a financial model for the purchase and use of a physical industrial or service robot. In a RaaS purchase contract, the buyer is paying for the use of the physical device through a subscription-based contract. RaaS is differentiated from a lease contract in that the original manufacturer continues to own the physical robotic device and carries the machine as an asset on its books. RaaS is becoming popular for many robotics equipment providers as the buyer can purchase the equipment through operating expense budgets rather than through a capital expenditure. The service contract for RaaS requires that the original manufacturer update and maintain the robot in good working order throughout the contract life. All parts and labor for preventative maintenance is also included in the RaaS contract. The original manufacturer may swap out the physical robot with another, equivalent machine at any time. In addition, the original manufacturer may provide remote service, via the Web, to remotely monitor, triage and repair, or recover the system. RaaS takes its name from the software as a service (SaaS) business model, popularized in the enterprise software market.

History

The initial design and implementation of applying service-oriented computing in embedded systems and robots was presented in the 49th IFIP 10.4 Workgroups meeting in February 2006. [7] In the initial design, a robot is the service client that looks up the service registry and consumes Web services on remote sites. Evolved from service-oriented robot, Robot as a Service is an all-in-one SOA unit, that is, the unit includes services for performing functionality, service directory for discovery and publishing, and applications for client’s direct access. [8] This all-in-one design gives the robot unit tools and capacity to be a self-contained cloud unit in the cloud computing environment. Based on RaaS concepts, a Visual IoT/Robotics Programming Language Environment (VIPLE) has been developed.

RaaS architecture

RaaS follows SOA and is a cloud computing unit. A RaaS unit acts as a service provider, a service broker, and as a service client:

  1. A RaaS cloud unit is a service provider: Each unit hosts a repository of preloaded services. A developer or a client can deploy new services into or remove service from a robot. The services can be used by this robot and can also be shared with other robots.
  2. A RaaS cloud contains a set of applications deployed: A developer or client can compose a new application (functionality) based on the services available in the unit and outside the unit.
  3. A RaaS unit is a service broker: a client can look up the services and applications available in the unit’s directory. A client can search and discover the applications and services deployed on the robot by browsing the directory. The services and applications can be organized in a hierarchy of classes to facilitate the discovery.

The main components of a RaaS unit and typical applications and services deployed. RaaS units are designed for the cloud computing environment. The services in RaaS will communicate with the drivers and other operating system components, which further communicate with the devices and other hardware components. The RaaS units can directly communicate with each other through Wi-Fi, if the wireless infrastructure is available or through ad hoc wireless network otherwise. The communication between RaaS and other services in the cloud are through standard service interface WSDL enabled by DPWS or RESTful service overall HTTP.

A few prototypes of RaaS have been implemented, which include both Web interface and physical devices. [9] [10] [11] [12] [13]

Dependability, including reliability and security are critical in RaaS design. Collaborating RaaS units can be scheduled for redundant execution, backing up each other’s operations. The redundant design can also address the instruction-level attack such as code injection and Return Oriented Programming (ROP) attacks. As the redundant RaaS units are independent of each other, instruction-level gadget programming is likely to generate different sequences in different devices. These differences in behaviors can be detected by the collaboration among the RaaS units. The major challenge in designing RaaS is to deal with the diversity of the networks, applications, and the environments or end users. In cloud computing, the network and communication protocols are limited to a few standards such WSDL, SOAP, HTTP, and RESTful architecture. In RaaS, HTTP, SOAP, and WSDL standards and robotics applications are the main design considerations.

Applications

RaaS can be used anywhere SOA, cloud computing, IoT, CPS, and ADS are used. One the application in computer science education. RaaS uses existing services to compose different applications at workflow level, which significantly reduce the learning curve of robotics programming. [14] [15]

See also

Related Research Articles

A web service (WS) is either:

In software engineering, service-oriented architecture (SOA) is an architectural style that focuses on discrete services instead of a monolithic design. By consequence, it is also applied in the field of software design where services are provided to the other components by application components, through a communication protocol over a network. A service is a discrete unit of functionality that can be accessed remotely and acted upon and updated independently, such as retrieving a credit card statement online. SOA is also intended to be independent of vendors, products and technologies.

<span class="mw-page-title-main">Mobile robot</span> Type of robot

A mobile robot is an automatic machine that is capable of locomotion. Mobile robotics is usually considered to be a subfield of robotics and information engineering.

<span class="mw-page-title-main">Edge computing</span> Distributed computing paradigm

Edge computing in the context of cloud computing, is roughly about installing multiple servers in multiple places, so that a user of a cloud application is likely to be physically closer to a server than if all servers were in one place. This is meant to make applications faster. More broadly, it refers to any design that pushes computation physically closer to a user, so as to reduce the latency compared to when an application runs on a single data centre. In the extreme case, this may simply refer to client-side computing.

OpenESB is a Java-based open-source enterprise service bus. It can be used as a platform for both enterprise application integration and service-oriented architecture. OpenESB allows developers to integrate legacy systems, external and internal partners and new development in business processes. It supports a multitude of integration technologies including standard JBI, XML with support for XML Schemas, WSDL, and BPEL with the aim of simplicity, efficiency, long-term durability, and low TCO.

Service-oriented communications (SOC) technologies are designed to be easily used in the context of service-oriented architectures. These technologies are generally software based and are built more like a business application than a traditional PBX business communications system. Service-oriented communications systems allow their services to participate in business processes. They make their services available to other business applications within and SOA and allow for reuse of the services. The goal of service-oriented communications is to enable business environments to build communications into their business processes, enabling more streamlined collaboration among people within the business. It typically assumes that certain services are provided in the context of an SOA service provider. This is often in the form of a suite of web services, but may also be attached to other means of sharing the services such as an enterprise system bus (ESB).

Ubiquitous robot is a term used in an analogous way to ubiquitous computing. Software useful for "integrating robotic technologies with technologies from the fields of ubiquitous and pervasive computing, sensor networks, and ambient intelligence".

Cyber–Physical System (CPS) are integrations of computation with physical processes. In cyber–physical systems, physical and software components are deeply intertwined, able to operate on different spatial and temporal scales, exhibit multiple and distinct behavioral modalities, and interact with each other in ways that change with context. CPS involves transdisciplinary approaches, merging theory of cybernetics, mechatronics, design and process science. The process control is often referred to as embedded systems. In embedded systems, the emphasis tends to be more on the computational elements, and less on an intense link between the computational and physical elements. CPS is also similar to the Internet of Things (IoT), sharing the same basic architecture; nevertheless, CPS presents a higher combination and coordination between physical and computational elements.

<span class="mw-page-title-main">Cloud computing</span> Form of shared Internet-based computing

Cloud computing is the on-demand availability of computer system resources, especially data storage and computing power, without direct active management by the user. Large clouds often have functions distributed over multiple locations, each of which is a data center. Cloud computing relies on sharing of resources to achieve coherence and typically uses a pay-as-you-go model, which can help in reducing capital expenses but may also lead to unexpected operating expenses for users.

<span class="mw-page-title-main">Web Services Description Language</span> XML-based interface description language

The Web Services Description Language is an XML-based interface description language that is used for describing the functionality offered by a web service. The acronym is also used for any specific WSDL description of a web service, which provides a machine-readable description of how the service can be called, what parameters it expects, and what data structures it returns. Therefore, its purpose is roughly similar to that of a type signature in a programming language.

Middleware is a type of computer software program that provides services to software applications beyond those available from the operating system. It can be described as "software glue".

<span class="mw-page-title-main">Cloud computing architecture</span> Overview about the cloud computing architecture

Cloud computing architecture refers to the components and subcomponents required for cloud computing. These components typically consist of a front end platform, back end platforms, a cloud based delivery, and a network. Combined, these components make up cloud computing architecture.

A distributed file system for cloud is a file system that allows many clients to have access to data and supports operations on that data. Each data file may be partitioned into several parts called chunks. Each chunk may be stored on different remote machines, facilitating the parallel execution of applications. Typically, data is stored in files in a hierarchical tree, where the nodes represent directories. There are several ways to share files in a distributed architecture: each solution must be suitable for a certain type of application, depending on how complex the application is. Meanwhile, the security of the system must be ensured. Confidentiality, availability and integrity are the main keys for a secure system.

In software engineering, a microservice architecture is a variant of the service-oriented architecture structural style. It is an architectural pattern that arranges an application as a collection of loosely coupled, fine-grained services, communicating through lightweight protocols. One of its goals is that teams can develop and deploy their services independently of others. This is achieved by the reduction of several dependencies in the code base, allowing developers to evolve their services with limited restrictions from users, and for additional complexity to be hidden from users. As a consequence, organizations are able to develop software with fast growth and size, as well as use off-the-shelf services more easily. Communication requirements are reduced. These benefits come at a cost to maintaining the decoupling. Interfaces need to be designed carefully and treated as a public API. One technique that is used is having multiple interfaces on the same service, or multiple versions of the same service, so as to not disrupt existing users of the code.

<span class="mw-page-title-main">Autonomous decentralized system</span>

An autonomous decentralized system is a decentralized system composed of modules or components that are designed to operate independently but are capable of interacting with each other to meet the overall goal of the system. This design paradigm enables the system to continue to function in the event of component failures. It also enables maintenance and repair to be carried out while the system remains operational. Autonomous decentralized systems have a number of applications including industrial production lines, railway signalling and robotics.

Fog computing or fog networking, also known as fogging, is an architecture that uses edge devices to carry out a substantial amount of computation, storage, and communication locally and routed over the Internet backbone.

Cloud robotics is a field of robotics that attempts to invoke cloud technologies such as cloud computing, cloud storage, and other Internet technologies centered on the benefits of converged infrastructure and shared services for robotics. When connected to the cloud, robots can benefit from the powerful computation, storage, and communication resources of modern data center in the cloud, which can process and share information from various robots or agent. Humans can also delegate tasks to robots remotely through networks. Cloud computing technologies enable robot systems to be endowed with powerful capability whilst reducing costs through cloud technologies. Thus, it is possible to build lightweight, low-cost, smarter robots with an intelligent "brain" in the cloud. The "brain" consists of data center, knowledge base, task planners, deep learning, information processing, environment models, communication support, etc.

"X as a service" is a phrasal template for any business model in which a product use is offered as a subscription-based service rather than as an artifact owned and maintained by the customer. Originating from the software as a service concept that appeared in the 2010s with the advent of cloud computing, the template has expanded to numerous offerings in the field of information technology and beyond it. The term XaaS can mean "anything as a service".

Firebase Cloud Messaging (FCM), formerly known as Google Cloud Messaging (GCM), is a cross-platform cloud service for messages and notifications for Android, iOS, and web applications, which as of May 2023 can be used at no cost. Firebase Cloud Messaging allows third-party application developers to send notifications or messages from servers hosted by FCM to users of the platform or end users.

ASU VIPLE is a Visual IoT/Robotics Programming Language Environment developed at Arizona State University.

References

  1. Yinong Chen, Zhihui Du, and Marcos Garcia-Acosta, M., "Robot as a Service in Cloud Computing", In Proceedings of the Fifth IEEE International Symposium on Service Oriented System Engineering (SOSE), Nanjing, June, 2010, pp. 151–158.
  2. Yinong Chen, H. Hu, "Internet of Intelligent Things and Robot as a Service", Simulation Modelling Practice and Theory, Volume 34, May 2013, Pages 159–171.
  3. Pranav Mehta, CTO, Intel Intelligent Systems Group: “Internet of Things and the Infrastructure”, Intel Embedded Research and Education Summit, February 2012, http://embedded.communities.intel.com/servlet/JiveServlet/downloadBody/7156-102-1-2402/Internet-of-Things-and-the-Infrastructure.pdf.
  4. Ragunathan (Raj) Rajkumar, Insup Lee, Lui Sha, and John Stankovic, “Cyber Physical Systems: The Next Computing Revolution”, 47th Design Automation Conference (DAC 2010), CPS Demystified Session, Anaheim, CA, June 17, 2010.
  5. Kinji Mori, Concept-Oriented Research and Development in Information Technology, Wiley Series in Systems Engineering and Management, 2014.
  6. M.B. Remy, M.B. Blake, Distributed Service-Oriented Robotics, IEEE Internet Computing, Volume: 15, Issue: 2, pp. 70–74, 2011.
  7. Yinong Chen, "Service-Oriented Computing in Recomposable Embedded Systems", Joint IARP/IEEE-RAS/EURON/IFIP 10.4 Workshop on Dependability in Robotics and Autonomous Systems, Tucson, AZ, February 15–19, 2006, http://webhost.laas.fr/TSF/IFIPWG/Workshops&Meetings/49/workshop/04%20chen.pdf
  8. Yinong Chen, Zhihui Du, and Marcos Garcia-Acosta, M., "Robot as a Service in Cloud Computing", In Proceedings of the Fifth IEEE International Symposium on Service Oriented System Engineering (SOSE), Nanjing, June, 2010, pp. 151–158.
  9. Yinong Chen, "Service-Oriented Computing in Recomposable Embedded Systems", Joint IARP/IEEE-RAS/EURON/IFIP 10.4 Workshop on Dependability in Robotics and Autonomous Systems, Tucson, AZ, February 15–19, 2006, http://webhost.laas.fr/TSF/IFIPWG/Workshops&Meetings/49/workshop/04%20chen.pdf
  10. Intel Autobot Web Service, 2012, http://venus.eas.asu.edu/WSRepository/RaaS/main/
  11. RaaS online programming environment, 2013, http://venus.eas.asu.edu/WSRepository/eRobotic/
  12. Zhihui Du, Weiqiang Yang, Yinong Chen, Xin Sun, Xiaoying Wang, and Chen Xu, "Design of a Robot Cloud Center", in 10th International Symposium on Autonomous Decentralized Systems (ISADS), Tokyo, March 2011, pp. 269–275.
  13. Robotics as a service implemented into robot, 2016, http://www.digitaltrends.com/cool-tech/qihan-sanbot/
  14. Yinong Chen, Zhizheng Zhou, "Service-Oriented Computing and Software Integration in Computing Curriculum", IPDPS Workshops 2014, pp. 1091–1098.
  15. Yinong Chen, Zhizheng Zhou, "Robot as a Service in Computing Curriculum”, 12th International Symposium on Autonomous Decentralized Systems (ISADS), Taichung, March 2015.