Rocker cover

Last updated
A Shelby Mustang Windsor V8 engine with "Cobra Powered by Ford" labeled rocker (valve) cover (lower left) Shelby Mustang GT350 engine.jpg
A Shelby Mustang Windsor V8 engine with "Cobra Powered by Ford" labeled rocker (valve) cover (lower left)
A 4-cylinder Lycoming O-320 aircraft engine, with the rocker box cover of one cylinder (of the two visible) removed to expose its rocker arms for inspection Lycoming O-320 cover removed.jpg
A 4-cylinder Lycoming O-320 aircraft engine, with the rocker box cover of one cylinder (of the two visible) removed to expose its rocker arms for inspection

A rocker cover, (UK), or valve cover (elsewhere) is a cover that encloses the rocker arm in an internal combustion engine, bolting with a gasket seal to the engine head. Engines with more than one head (such as a V8) will have multiple rocker covers. On engines without rocker arms, such as some overhead cam and most dual overhead cam types, [1] they are known as rocker boxes in the United Kingdom.

Contents

On modern engines without rocker arms they are internationally known as "valve cover" but are sometimes referred to as a "cam cover" or "timing cover" if they also cover the timing gear(s) and belt or chain.

Very large multi-cylinder engines, such as those used in a ship or in aviation, may have one rocker cover for each cylinder, to make removal and installation more manageable.

History

Rocker covers did not exist in early engines, which had exposed intake and exhaust valves (for ease of lubrication). With the advance of central lubrication rocker covers were added to keep the oil in and dirt out. They are effectively ubiquitous today.[ citation needed ]

Rocker cover gasket

A rocker cover gasket (valve cover gasket in the US and Canada) is used to seal the joint between the cover and engine head. Failure of the gasket can cause oil to leak from the engine. A head gasket is used to seal the joint between the head and the engine block.

Related Research Articles

<span class="mw-page-title-main">Poppet valve</span> Type of valve

A poppet valve is a valve typically used to control the timing and quantity of petrol (gas) or vapour flow into or out of an engine, but with many other applications.

<span class="mw-page-title-main">Camshaft</span> Mechanical component that converts rotational motion to reciprocal motion

A camshaft is a shaft that contains a row of pointed cams in order to convert rotational motion to reciprocating motion. Camshafts are used in piston engines, mechanically controlled ignition systems and early electric motor speed controllers.

<span class="mw-page-title-main">Cylinder head</span> Component of an internal combustion engine

In a piston engine, the cylinder head sits above the cylinders, forming the roof of the combustion chamber. In sidevalve engines the head is a simple plate of metal containing the spark plugs and possibly heat dissipation fins. In more modern overhead valve and overhead camshaft engines, the head is a more complicated metal block that also contains the inlet and exhaust passages, and often coolant passages, Valvetrain components, and fuel injectors.

<span class="mw-page-title-main">Engine tuning</span> Optimisation of engine performance

Engine tuning is the adjustment or modification of the internal combustion engine or Engine Control Unit (ECU) to yield optimal performance and increase the engine's power output, economy, or durability. These goals may be mutually exclusive; an engine may be de-tuned with respect to output power in exchange for better economy or longer engine life due to lessened stress on engine components.

<span class="mw-page-title-main">VTEC</span> Automobile variable valve timing technology

VTEC is a system developed by Honda to improve the volumetric efficiency of a four-stroke internal combustion engine, resulting in higher performance at high RPM, and lower fuel consumption at low RPM. The VTEC system uses two camshaft profiles and hydraulically selects between profiles. It was invented by Honda engineer Ikuo Kajitani. It is distinctly different from standard VVT systems which change only the valve timings and do not change the camshaft profile or valve lift in any way.

<span class="mw-page-title-main">Northstar engine series</span> Family of high performance 90° V engines produced by General Motors

The Northstar engine is a family of high-performance 90° V engines produced by General Motors between 1993 and 2011. Regarded as GM's most technically complex engine, the original double overhead cam, four valve per cylinder, aluminum block/aluminum head V8 design was developed by Oldsmobile R&D, but is most associated with Cadillac's Northstar series.

<span class="mw-page-title-main">Chrysler LA engine</span> Reciprocating internal combustion engine

The LA engine is a family of overhead-valve small-block 90° V-configured gasoline engines built by Chrysler Corporation between 1964 and 2003. Primarily V8s, the line includes a single V6 and V10, both derivations of its Magnum series introduced in 1992. A replacement of the Chrysler A engine, they were factory-installed in passenger vehicles, trucks and vans, commercial vehicles, marine and industrial applications. Their combustion chambers are wedge-shaped, rather than polyspheric, as in the A engine, or hemispheric in the Chrysler Hemi. LA engines have the same 4.46 in (113 mm) bore spacing as the A engines.

<span class="mw-page-title-main">Overhead camshaft engine</span> Valvetrain configuration

An overhead camshaft (OHC) engine is a piston engine in which the camshaft is located in the cylinder head above the combustion chamber. This contrasts with earlier overhead valve engines (OHV), where the camshaft is located below the combustion chamber in the engine block.

<span class="mw-page-title-main">BMW M42</span> Reciprocating internal combustion engine

The BMW M42 is a DOHC straight-four petrol engine which was produced from 1989-1996. It is BMW's first mass-production DOHC engine and was produced alongside the BMW M40 SOHC four-cylinder engine as the higher performance engine.

<span class="mw-page-title-main">Overhead valve engine</span> Type of piston engine valvetrain design

An overhead valve engine, abbreviated (OHV) and sometimes called a pushrod engine, is a piston engine whose valves are located in the cylinder head above the combustion chamber. This contrasts with flathead engines, where the valves were located below the combustion chamber in the engine block.

<span class="mw-page-title-main">Saturn I4 engine</span> Reciprocating internal combustion engine

The powerplant used in Saturn S-Series automobiles was a straight-4 aluminum piston engine produced by Saturn, a subsidiary of General Motors. The engine was only used in the Saturn S-series line of vehicles from 1991 through 2002. It was available in chain-driven SOHC or DOHC variants.

<span class="mw-page-title-main">Tappet</span> Internal combustion engine part

A tappet or valve lifter is a valve train component which converts rotational motion into linear motion in activating a valve. It is most commonly found in internal combustion engines, where it converts the rotational motion of the camshaft into linear motion of intake and exhaust valves, either directly or indirectly.

<span class="mw-page-title-main">Yamaha XS 650</span> Yamaha motorcycle

The Yamaha XS650 is a mid-size motorcycle that was made by the Yamaha Motor Company. The standard model was introduced in October 1969, and produced until 1979. The "Special" cruiser model was introduced in 1978 and produced until 1985. The XS650 began with the 1955 Hosk SOHC 500 twin. After about 10 years of producing 500 twin, Hosk engineers designed a 650 cc twin. Later Showa Corporation acquired the Hosk company, and in 1960 Yamaha acquired Showa, with Hosk's early design of 650 cc twin.

<span class="mw-page-title-main">Subaru EJ engine</span> Reciprocating internal combustion engine

The Subaru EJ engine is a series of four-stroke automotive engines manufactured by Subaru. They were introduced in 1989, intended to succeed the previous Subaru EA engine. The EJ series was the mainstay of Subaru's engine line, with all engines of this series being 16-valve horizontal flat-fours, with configurations available for single, or double-overhead camshaft arrangements. Naturally aspirated and turbocharged versions are available, ranging from 96 to 310 hp. These engines are commonly used in light aircraft, kit cars and engine swaps into air-cooled Volkswagens, and are also popular as a swap into copy wasserboxer engined Volkswagen T3/Vanagon. Primary engineering on the EJ series was done by Masayuki Kodama, Takemasa Yamada and Shuji Sawafuji of Fuji Heavy Industries, Subaru's parent company.

<span class="mw-page-title-main">Valvetrain</span> Mechanical system in an internal combustion engine

A valvetrain is a mechanical system that controls the operation of the intake and exhaust valves in an internal combustion engine. The intake valves control the flow of air/fuel mixture into the combustion chamber, while the exhaust valves control the flow of spent exhaust gases out of the combustion chamber once combustion is completed.

<span class="mw-page-title-main">Head gasket</span> Gasket that sits between the engine block and cylinder head(s) in an internal combustion engine

In an internal combustion engine, a head gasket provides the seal between the engine block and cylinder head(s).

<span class="mw-page-title-main">Wasserboxer</span> Reciprocating internal combustion engine

The Volkswagen wasserboxer is a four cylinder horizontally opposed pushrod overhead-valve (OHV) petrol engine developed by Volkswagen. The engine is water-cooled, and takes its name from the German: "Wasserboxer" ("water-boxer"); with "boxer" being another term for horizontally opposed engines. It was available in two displacements – either a 1.9-litre or a 2.1-litre; the 2.1-litre being a longer-stroke version of the 1.9-litre, both variants sharing the same cylinder bore. This engine was unique to the Volkswagen Type 2 (T3), having never been used in any other vehicle. Volkswagen contracted Oettinger to develop a six-cylinder version of this engine. Volkswagen decided not to use it, but Oettinger sold a Volkswagen Type 2 (T3) equipped with this engine.

A hydraulic tappet, also known as a hydraulic valve lifter or hydraulic lash adjuster, is a device for maintaining zero valve clearance in an internal combustion engine. Conventional solid valve lifters require regular adjusting to maintain a small clearance between the valve and its rocker or cam follower. This space prevents the parts from binding as they expand with the engine's heat, but can also lead to noisy operation and increased wear as the parts rattle against one another until they reach operating temperature. The hydraulic lifter was designed to compensate for this small tolerance, allowing the valve train to operate with zero clearance—leading to quieter operation, longer engine life, and eliminating the need for periodic adjustment of valve clearance.

<span class="mw-page-title-main">Oil pump (internal combustion engine)</span> Internal combustion engine part that circulates engine oil under pressure

The oil pump is an internal combustion engine part that circulates engine oil under pressure to the rotating bearings, the sliding pistons and the camshaft of the engine. This lubricates the bearings, allows the use of higher-capacity fluid bearings and also assists in cooling the engine.

References

  1. Bickford, John H. (1998). Gaskets and Gasketed Joints. CRC Press. ISBN   0-8247-9877-5.[ page needed ]