Ronald Cramer

Last updated

Ronald John Fitzgerald Cramer (born 3 February 1968 in Haarlem) [1] is a professor at the Centrum Wiskunde & Informatica (CWI) in Amsterdam and the University of Leiden. He obtained his PhD from the University of Amsterdam in 1997. Prior to returning to the Netherlands he was at the University of Aarhus.

He is best known for his work with Victor Shoup on chosen ciphertext secure encryption in the standard model, in particular the Cramer–Shoup encryption scheme. [2]

Cramer became a member of the Royal Netherlands Academy of Arts and Sciences in 2013. [3] He is member of the advisory board of the German Center for Advanced Security Research Darmstadt CASED.

Related Research Articles

<span class="mw-page-title-main">Public-key cryptography</span> Cryptographic system with public and private keys

Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security.

RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem that is widely used for secure data transmission. It is also one of the oldest. The acronym "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly described the algorithm in 1977. An equivalent system was developed secretly in 1973 at Government Communications Headquarters (GCHQ) by the English mathematician Clifford Cocks. That system was declassified in 1997.

In cryptography, the ElGamal encryption system is an asymmetric key encryption algorithm for public-key cryptography which is based on the Diffie–Hellman key exchange. It was described by Taher Elgamal in 1985. ElGamal encryption is used in the free GNU Privacy Guard software, recent versions of PGP, and other cryptosystems. The Digital Signature Algorithm (DSA) is a variant of the ElGamal signature scheme, which should not be confused with ElGamal encryption.

Malleability is a property of some cryptographic algorithms. An encryption algorithm is "malleable" if it is possible to transform a ciphertext into another ciphertext which decrypts to a related plaintext. That is, given an encryption of a plaintext , it is possible to generate another ciphertext which decrypts to , for a known function , without necessarily knowing or learning .

A chosen-ciphertext attack (CCA) is an attack model for cryptanalysis where the cryptanalyst can gather information by obtaining the decryptions of chosen ciphertexts. From these pieces of information the adversary can attempt to recover the hidden secret key used for decryption.

In cryptography, an initialization vector (IV) or starting variable (SV) is an input to a cryptographic primitive being used to provide the initial state. The IV is typically required to be random or pseudorandom, but sometimes an IV only needs to be unpredictable or unique. Randomization is crucial for some encryption schemes to achieve semantic security, a property whereby repeated usage of the scheme under the same key does not allow an attacker to infer relationships between segments of the encrypted message. For block ciphers, the use of an IV is described by the modes of operation.

The Paillier cryptosystem, invented by and named after Pascal Paillier in 1999, is a probabilistic asymmetric algorithm for public key cryptography. The problem of computing n-th residue classes is believed to be computationally difficult. The decisional composite residuosity assumption is the intractability hypothesis upon which this cryptosystem is based.

In cryptography, a semantically secure cryptosystem is one where only negligible information about the plaintext can be feasibly extracted from the ciphertext. Specifically, any probabilistic, polynomial-time algorithm (PPTA) that is given the ciphertext of a certain message , and the message's length, cannot determine any partial information on the message with probability non-negligibly higher than all other PPTA's that only have access to the message length. This concept is the computational complexity analogue to Shannon's concept of perfect secrecy. Perfect secrecy means that the ciphertext reveals no information at all about the plaintext, whereas semantic security implies that any information revealed cannot be feasibly extracted.

In cryptography, the strong RSA assumption states that the RSA problem is intractable even when the solver is allowed to choose the public exponent e. More specifically, given a modulus N of unknown factorization, and a ciphertext C, it is infeasible to find any pair (Me) such that C ≡ M e mod N.

The Cramer–Shoup system is an asymmetric key encryption algorithm, and was the first efficient scheme proven to be secure against adaptive chosen ciphertext attack using standard cryptographic assumptions. Its security is based on the computational intractability of the decisional Diffie–Hellman assumption. Developed by Ronald Cramer and Victor Shoup in 1998, it is an extension of the ElGamal cryptosystem. In contrast to ElGamal, which is extremely malleable, Cramer–Shoup adds other elements to ensure non-malleability even against a resourceful attacker. This non-malleability is achieved through the use of a universal one-way hash function and additional computations, resulting in a ciphertext which is twice as large as in ElGamal.

In cryptography, Optimal Asymmetric Encryption Padding (OAEP) is a padding scheme often used together with RSA encryption. OAEP was introduced by Bellare and Rogaway, and subsequently standardized in PKCS#1 v2 and RFC 2437.

Ciphertext indistinguishability is a property of many encryption schemes. Intuitively, if a cryptosystem possesses the property of indistinguishability, then an adversary will be unable to distinguish pairs of ciphertexts based on the message they encrypt. The property of indistinguishability under chosen plaintext attack is considered a basic requirement for most provably secure public key cryptosystems, though some schemes also provide indistinguishability under chosen ciphertext attack and adaptive chosen ciphertext attack. Indistinguishability under chosen plaintext attack is equivalent to the property of semantic security, and many cryptographic proofs use these definitions interchangeably.

Authenticated Encryption (AE) are forms of encryption which simultaneously assure the confidentiality and authenticity of data.

Integrated Encryption Scheme (IES) is a hybrid encryption scheme which provides semantic security against an adversary who is able to use chosen-plaintext or chosen-ciphertext attacks. The security of the scheme is based on the computational Diffie–Hellman problem.
Two variants of IES are specified: Discrete Logarithm Integrated Encryption Scheme (DLIES) and Elliptic Curve Integrated Encryption Scheme (ECIES), which is also known as the Elliptic Curve Augmented Encryption Scheme or simply the Elliptic Curve Encryption Scheme. These two variants are identical up to the change of an underlying group.

Plaintext-awareness is a notion of security for public-key encryption. A cryptosystem is plaintext-aware if it is difficult for any efficient algorithm to come up with a valid ciphertext without being aware of the corresponding plaintext.

In cryptography a universal one-way hash function, is a type of universal hash function of particular importance to cryptography. UOWHF's are proposed as an alternative to collision-resistant hash functions (CRHFs). CRHFs have a strong collision-resistance property: that it is hard, given randomly chosen hash function parameters, to find any collision of the hash function. In contrast, UOWHFs require that it be hard to find a collision where one preimage is chosen independently of the hash function parameters. The primitive was suggested by Moni Naor and Moti Yung and is also known as "target collision resistant" hash functions; it was employed to construct general digital signature schemes without trapdoor functions, and also within chosen-ciphertext secure public key encryption schemes.

<span class="mw-page-title-main">Ronald Plasterk</span> Dutch politician

Ronald Hans Anton Plasterk is a Dutch scientist, entrepreneur and retired politician of the Labour Party (PvdA). He has earned a PhD degree in biology, specialised in molecular genetics. Being a former Minister of the Dutch government, he has been the founder and CEO of Frame Cancer Therapeutics since December 2018. Next to his work at Frame, he has been appointed as professor at the University of Amsterdam since September 2018.

In cryptography, a hybrid cryptosystem is one which combines the convenience of a public-key cryptosystem with the efficiency of a symmetric-key cryptosystem. Public-key cryptosystems are convenient in that they do not require the sender and receiver to share a common secret in order to communicate securely. However, they often rely on complicated mathematical computations and are thus generally much more inefficient than comparable symmetric-key cryptosystems. In many applications, the high cost of encrypting long messages in a public-key cryptosystem can be prohibitive. This is addressed by hybrid systems by using a combination of both.

Mordechai M. "Moti" Yung is a cryptographer and computer scientist known for his work on cryptovirology and kleptography.

<span class="mw-page-title-main">Mars Cramer</span> Dutch economist (1928–2014)

Jan Salomon (Mars) Cramer was a Dutch economist, Professor of Statistics and Econometrics at the University of Amsterdam, known for his work of empirical econometrics.

References

  1. R.J.F. Cramer, 1968 - at the University of Amsterdam Album Academicum website
  2. Cramer, R.; Shoup, V. (2003). "Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack". SIAM Journal on Computing . 33 (1): 167–226. CiteSeerX   10.1.1.78.2904 . doi:10.1137/S0097539702403773.
  3. "Ronald Cramer". Royal Netherlands Academy of Arts and Sciences. Archived from the original on 29 January 2016. Retrieved 29 January 2016.