Ronchi test

Last updated

In optical testing a Ronchi test is a method of determining the surface shape (figure) of a mirror used in telescopes and other optical devices.

Contents

Description

In 1923 Italian physicist Vasco Ronchi published a description of the eponymous Ronchi test, [1] [2] which is a variation of the Foucault knife-edge test [3] [4] and which uses simple equipment to test the quality of optics, especially concave mirrors. [5] [6] . A "Ronchi tester" consists of:

A Ronchi grating consists of alternate dark and clear stripes. One design is a small frame with several evenly spaced fine wires attached.

Light is emitted through the Ronchi grating (or a single slit), reflected by the mirror being tested, then passes through the Ronchi grating again and is observed by the person doing the test. The observer's eye is placed close to the centre of curvature of the mirror under test looking at the mirror through the grating. The Ronchi grating is a short distance (less than 2 cm) closer to the mirror.[ citation needed ]

The observer sees the mirror covered in a pattern of stripes that reveal the shape of the mirror. The pattern is compared to a mathematically generated diagram (usually done on a computer today) of what it should look like for a given figure. Inputs to the program are line frequency of the Ronchi grating, focal length and diameter of the mirror, and the figure required. If the mirror is spherical, the pattern consists of straight lines.

Applications

The Ronchi test is used in the testing of mirrors for reflecting telescopes especially in the field of amateur telescope making. It is much faster to set up than the standard Foucault knife-edge test.

The Ronchi test differs from the knife-edge test, requiring a specialized target (the Ronchi grating, which amounts to a periodic series of knife edges) and being more difficult to interpret. This procedure offers a quick evaluation of the mirror's shape and condition. It readily identifies a 'turned edge' (rolled down outer diameter of the mirror), a common fault that can develop in objective mirror making.

The figure quality of a convex lens may be visually tested using a similar principle. The grating is moved around the focal point of the lens while viewing the virtual image through the opposite side. Distortions in the lens surface figure then appear as asymmetries in the periodic grating image.

Footnotes

  1. V. Ronchi (1923) "Le frange di combinazioni nello studio delle superficie e dei sistemi ottici" [Combination fringes in the study of surfaces and optical systems], Rivista d'Ottica e Meccanica di precisione [Journal of Optics and Precision Mechanics], vol. 2, pages 9-35.
  2. Vasco Ronchi (1927) "Due nuovi metodi per lo studio delle superficie e dei sistemi ottici" (Two new methods for the study of surfaces and optical systems), Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Series 1, vol. 15, pages 1-50. [Note: This citation is somewhat misleading. Ronchi first published this article in 1923, but it was included in volume 15 of Annali della Scuola..., which wasn't issued until 1927.] Available on-line (in Italian): http://archive.numdam.org/ARCHIVE/ASNSP/ASNSP_1927_1_15_/ASNSP_1927_1_15__A1_0/ASNSP_1927_1_15__A1_0.pdf .
  3. L. Foucault (1858) "Description des procédés employés pour reconnaitre la configuration des surfaces optiques" (Description of the methods used to recognize the configuration of optical surfaces), Comptes rendus hebdomadaires des séances de l'Académie des Sciences de Paris, vol. 47, pages 958-959.
  4. L. Foucault (1859) "Mémoire sur la construction des télescopes en verre argenté" (Memoir on the construction of reflecting telescopes), Annales de l'Observatoire impériale de Paris, vol. 5, pages 197-237.
  5. J. A. Anderson and Russell W. Porter (1929) "Ronchi's method of optical testing," Astrophysical Journal, vol. 70, pages 175-181. Available on-line at: http://articles.adsabs.harvard.edu//full/1929ApJ....70..175A/0000175.000.html .
  6. Masud Mansuripur (July 1997) "The Ronchi test," Optics & Photonics News, vol. 8, pages 42-46. Available on-line at: http://www.mmresearch.com/articles/article1/index.htm .

Related Research Articles

<span class="mw-page-title-main">Optics</span> Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Amateur telescope making</span>

Amateur telescope making is the activity of building telescopes as a hobby, as opposed to being a paid professional. Amateur telescope makers build their instruments for personal enjoyment of a technical challenge, as a way to obtain an inexpensive or personally customized telescope, or as a research tool in the field of astronomy. Amateur telescope makers are usually a sub-group in the field of amateur astronomy.

<span class="mw-page-title-main">Joseph von Fraunhofer</span> German physicist (1787–1826)

Joseph Ritter von Fraunhofer was a German physicist and optical lens manufacturer. He made optical glass, an achromatic telescope, and objective lenses. He also invented the spectroscope and developed diffraction grating. In 1814, he discovered and studied the dark absorption lines in the spectrum of the sun now known as Fraunhofer lines.

<span class="mw-page-title-main">History of the telescope</span> Aspect of history

The history of the telescope can be traced to before the invention of the earliest known telescope, which appeared in 1608 in the Netherlands, when a patent was submitted by Hans Lippershey, an eyeglass maker. Although Lippershey did not receive his patent, news of the invention soon spread across Europe. The design of these early refracting telescopes consisted of a convex objective lens and a concave eyepiece. Galileo improved on this design the following year and applied it to astronomy. In 1611, Johannes Kepler described how a far more useful telescope could be made with a convex objective lens and a convex eyepiece lens. By 1655, astronomers such as Christiaan Huygens were building powerful but unwieldy Keplerian telescopes with compound eyepieces.

<span class="mw-page-title-main">Léon Foucault</span> French physicist

Jean Bernard Léon Foucault was a French physicist best known for his demonstration of the Foucault pendulum, a device demonstrating the effect of Earth's rotation. He also made an early measurement of the speed of light, discovered eddy currents, and is credited with naming the gyroscope.

<span class="mw-page-title-main">Schlieren photography</span> Process to photograph fluid flow

Schlieren photography is a process for photographing fluid flow. Invented by the German physicist August Toepler in 1864 to study supersonic motion, it is widely used in aeronautical engineering to photograph the flow of air around objects.

<span class="mw-page-title-main">Reflecting telescope</span> Telescopes which utilize curved mirrors to form an image

A reflecting telescope is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century by Isaac Newton as an alternative to the refracting telescope which, at that time, was a design that suffered from severe chromatic aberration. Although reflecting telescopes produce other types of optical aberrations, it is a design that allows for very large diameter objectives. Almost all of the major telescopes used in astronomy research are reflectors. Many variant forms are in use and some employ extra optical elements to improve image quality or place the image in a mechanically advantageous position. Since reflecting telescopes use mirrors, the design is sometimes referred to as a catoptric telescope.

Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Wavefront</span> Locus of points at equal phase in a wave

In physics, the wavefront of a time-varying wave field is the set (locus) of all points having the same phase. The term is generally meaningful only for fields that, at each point, vary sinusoidally in time with a single temporal frequency.

<span class="mw-page-title-main">Catadioptric system</span> Optical system where refraction and reflection are combined

A catadioptric optical system is one where refraction and reflection are combined in an optical system, usually via lenses (dioptrics) and curved mirrors (catoptrics). Catadioptric combinations are used in focusing systems such as searchlights, headlamps, early lighthouse focusing systems, optical telescopes, microscopes, and telephoto lenses. Other optical systems that use lenses and mirrors are also referred to as "catadioptric", such as surveillance catadioptric sensors.

Nonimaging optics is the branch of optics concerned with the optimal transfer of light radiation between a source and a target. Unlike traditional imaging optics, the techniques involved do not attempt to form an image of the source; instead an optimized optical system for optimal radiative transfer from a source to a target is desired.

Optical manufacturing and testing spans an enormous range of manufacturing procedures and optical test configurations.

Ronchi may refer to:

A wavefront sensor is a device for measuring the aberrations of an optical wavefront. Although an amplitude splitting interferometer such as the Michelson interferometer could be called a wavefront sensor, the term is normally applied to instruments that do not require an unaberrated reference beam to interfere with. They are commonly used in adaptive optics systems, lens testing and increasingly in ophthalmology.

<span class="mw-page-title-main">Lurie–Houghton telescope</span>

The Houghton telescope or Lurie–Houghton telescope is a catadioptric telescope. Houghton's original design uses a two-lens corrector at the front of the telescope and a spherical mirror at the back; it was patented in 1944. Instead of the hard to make intricately shaped compound curve Schmidt corrector plate, or the heavy Maksutov-type meniscus corrector lens, the Houghton double-lens corrector is relatively easy to make.

<span class="mw-page-title-main">Figuring</span>

Figuring is the process of final polishing of an optical surface to remove imperfections or modify the surface curvature to achieve the shape required for a given application.

<span class="mw-page-title-main">Null corrector</span> Optical component

A null corrector is an optical device used in the testing of large aspheric mirrors. A spherical mirror of any size can be tested relatively easily using standard optical components such as laser, mirrors, beamsplitters, and converging lenses. One method of doing this using a Shack cube is shown at the right, and many other setups are possible. An interferometer test such as this one generates a contour map of the deviation of the surface from a perfect sphere, with the contours in units of half the wavelength used. This is called a null test because when the mirror is perfect, the result is null. If the result is not null, then the mirror is not perfect, and the pattern shows where the optician should polish the mirror to improve it.

<span class="mw-page-title-main">Ronchi ruling</span>

A Ronchi ruling, Ronchi grating, or Ronchi mask, named after the Italian physicist Vasco Ronchi, is a constant-interval bar and space square-wave optical target or mask. The design produces a precisely patterned light source by reflection or illumination, or a stop pattern by transmission, with precise uniformity, spatial frequency, sharp edge definition, and high contrast ratio.

<span class="mw-page-title-main">Foucault knife-edge test</span>

The Foucault knife-edge test is an optical test to accurately measure the shape of concave curved mirrors. It is commonly used by amateur telescope makers for figuring primary mirrors in reflecting telescopes. It uses a relatively simple, inexpensive apparatus compared to other testing techniques.

Walter Thompson Welford was a British physicist with expertise in optics.

References