Ross's conjecture

Last updated

In queueing theory, a discipline within the mathematical theory of probability, Ross's conjecture gives a lower bound for the average waiting-time experienced by a customer when arrivals to the queue do not follow the simplest model for random arrivals. It was proposed by Sheldon M. Ross in 1978 and proved in 1981 by Tomasz Rolski. [1] Equality can be obtained in the bound; and the bound does not hold for finite buffer queues. [2]

Bound

Ross's conjecture is a bound for the mean delay in a queue where arrivals are governed by a doubly stochastic Poisson process [3] or by a non-stationary Poisson process. [1] [4] The conjecture states that the average amount of time that a customer spends waiting in a queue is greater than or equal to

where S is the service time and λ is the average arrival rate (in the limit as the length of the time period increases). [1]

Related Research Articles

Queueing theory Mathematical study of waiting lines, or queues

Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service.

In queueing theory, a discipline within the mathematical theory of probability, Little's result, theorem, lemma, law, or formula is a theorem by John Little which states that the long-term average number L of customers in a stationary system is equal to the long-term average effective arrival rate λ multiplied by the average time W that a customer spends in the system. Expressed algebraically the law is

In queueing theory, a discipline within the mathematical theory of probability, a Jackson network is a class of queueing network where the equilibrium distribution is particularly simple to compute as the network has a product-form solution. It was the first significant development in the theory of networks of queues, and generalising and applying the ideas of the theorem to search for similar product-form solutions in other networks has been the subject of much research, including ideas used in the development of the Internet. The networks were first identified by James R. Jackson and his paper was re-printed in the journal Management Science’s ‘Ten Most Influential Titles of Management Sciences First Fifty Years.’

In queueing theory, a discipline within the mathematical theory of probability, a G-network is an open network of G-queues first introduced by Erol Gelenbe as a model for queueing systems with specific control functions, such as traffic re-routing or traffic destruction, as well as a model for neural networks. A G-queue is a network of queues with several types of novel and useful customers:

In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed.

In queueing theory, a discipline within the mathematical theory of probability, the Pollaczek–Khinchine formula states a relationship between the queue length and service time distribution Laplace transforms for an M/G/1 queue. The term is also used to refer to the relationships between the mean queue length and mean waiting/service time in such a model.

M/M/1 queue Queue with Markov (Poisson) arrival process, exponential service time distribution and one server

In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation. The model is the most elementary of queueing models and an attractive object of study as closed-form expressions can be obtained for many metrics of interest in this model. An extension of this model with more than one server is the M/M/c queue.

In actuarial science and applied probability ruin theory uses mathematical models to describe an insurer's vulnerability to insolvency/ruin. In such models key quantities of interest are the probability of ruin, distribution of surplus immediately prior to ruin and deficit at time of ruin.

In queueing theory, a discipline within the mathematical theory of probability, quasireversibility is a property of some queues. The concept was first identified by Richard R. Muntz and further developed by Frank Kelly. Quasireversibility differs from reversibility in that a stronger condition is imposed on arrival rates and a weaker condition is applied on probability fluxes. For example, an M/M/1 queue with state-dependent arrival rates and state-dependent service times is reversible, but not quasireversible.

Poisson distribution Discrete probability distribution

In probability theory and statistics, the Poisson distribution, named after French mathematician Denis Poisson, is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. The Poisson distribution can also be used for the number of events in other specified intervals such as distance, area or volume.

In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue is a multi-server queueing model. In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. It is a generalisation of the M/M/1 queue which considers only a single server. The model with infinitely many servers is the M/M/∞ queue.

In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian, service times have a General distribution and there is a single server. The model name is written in Kendall's notation, and is an extension of the M/M/1 queue, where service times must be exponentially distributed. The classic application of the M/G/1 queue is to model performance of a fixed head hard disk.

In queueing theory, a discipline within the mathematical theory of probability, a fluid queue is a mathematical model used to describe the fluid level in a reservoir subject to randomly determined periods of filling and emptying. The term dam theory was used in earlier literature for these models. The model has been used to approximate discrete models, model the spread of wildfires, in ruin theory and to model high speed data networks. The model applies the leaky bucket algorithm to a stochastic source.

In queueing theory, a discipline within the mathematical theory of probability, an M/G/k queue is a queue model where arrivals are Markovian, service times have a General distribution and there are k servers. The model name is written in Kendall's notation, and is an extension of the M/M/c queue, where service times must be exponentially distributed and of the M/G/1 queue with a single server. Most performance metrics for this queueing system are not known and remain an open problem.

In queueing theory, a discipline within the mathematical theory of probability, the M/M/∞ queue is a multi-server queueing model where every arrival experiences immediate service and does not wait. In Kendall's notation it describes a system where arrivals are governed by a Poisson process, there are infinitely many servers, so jobs do not need to wait for a server. Each job has an exponentially distributed service time. It is a limit of the M/M/c queue model where the number of servers c becomes very large.

In queueing theory, a discipline within the mathematical theory of probability, a heavy traffic approximation is the matching of a queueing model with a diffusion process under some limiting conditions on the model's parameters. The first such result was published by John Kingman who showed that when the utilisation parameter of an M/M/1 queue is near 1 a scaled version of the queue length process can be accurately approximated by a reflected Brownian motion.

In queueing theory, a discipline within the mathematical theory of probability, an M/D/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times are fixed (deterministic). The model name is written in Kendall's notation. Agner Krarup Erlang first published on this model in 1909, starting the subject of queueing theory. An extension of this model with more than one server is the M/D/c queue.

In queueing theory, a discipline within the mathematical theory of probability, an M/D/c queue represents the queue length in a system having c servers, where arrivals are determined by a Poisson process and job service times are fixed (deterministic). The model name is written in Kendall's notation. Agner Krarup Erlang first published on this model in 1909, starting the subject of queueing theory. The model is an extension of the M/D/1 queue which has only a single server.

Poisson point process

In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space. The Poisson point process is often called simply the Poisson process, but it is also called a Poisson random measure, Poisson random point field or Poisson point field. This point process has convenient mathematical properties, which has led to it being frequently defined in Euclidean space and used as a mathematical model for seemingly random processes in numerous disciplines such as astronomy, biology, ecology, geology, seismology, physics, economics, image processing, and telecommunications.

Sheldon M. Ross is the Daniel J. Epstein Chair and Professor at the USC Viterbi School of Engineering. He is the author of several books in the field of probability.

References

  1. 1 2 3 Rolski, Tomasz (1981), "Queues with non-stationary input stream: Ross's conjecture", Advances in Applied Probability, 13 (3): 603–618, doi:10.2307/1426787, JSTOR   1426787, MR   0615953 .
  2. Heyman, D. P. (1982), "On Ross's conjectures about queues with non-stationary Poisson arrivals", Journal of Applied Probability, 19 (1): 245–249, doi:10.2307/3213936, JSTOR   3213936, MR   0644439 .
  3. Huang, J. (1991), "A Study on Queuing Theory and Teletraffic Models (Part 1 of 3)", Ph.D Dissertation (1), doi:10.13140/RG.2.1.1259.6329 .
  4. Ross, Sheldon M. (1978), "Average delay in queues with non-stationary Poisson arrivals", Journal of Applied Probability, 15 (3): 602–609, doi:10.2307/3213122, JSTOR   3213122, MR   0483101 .