Rotary vane pump

Last updated
An eccentric rotary vane pump Pompe a palettes.gif
An eccentric rotary vane pump
Another eccentric rotary-vane pump design. Note that modern pumps have an area contact between rotor and stator (and not a line contact).
1. pump housing
2. rotor
3. vanes
4. spring Rotary vane pump.svg
Another eccentric rotary-vane pump design. Note that modern pumps have an area contact between rotor and stator (and not a line contact).
1. pump housing
2. rotor
3. vanes
4. spring

A rotary vane pump is a type of positive-displacement pump that consists of vanes mounted to a rotor that rotates inside a cavity. In some cases, these vanes can have variable length and/or be tensioned to maintain contact with the walls as the pump rotates.

Contents

This type of pump is considered less suitable than other vacuum pumps for high-viscosity and high-pressure fluids[ citation needed ], and is complex to operate[ clarification needed ][ citation needed ]. They can endure short periods of dry operation, and are considered good for low-viscosity fluids[ citation needed ].

Types

The simplest vane pump has a circular rotor rotating inside a larger circular cavity. The centers of these two circles are offset, causing eccentricity. Vanes are mounted in slots cut into the rotor. The vanes are allowed a certain limited range of movement within these slots such that they can maintain contact with the wall of the cavity as the rotor rotates. The vanes may be encouraged to maintain such contact through means such as springs, gravity, or centrifugal force. A small amount of oil may be present within the mechanism to help create a better seal between the tips of the vanes and the cavity's wall. The contact between the vanes and the cavity wall divides up the cavity into "vane chambers" that do the pumping work. On the suction side of the pump, the vane chambers are increased in volume and are thus filled with fluid forced in by the inlet vacuum pressure, which is the pressure from the system being pumped, sometimes just the atmosphere. On the discharge side of the pump, the vane chambers decrease in volume, compressing the fluid and thus forcing it out of the outlet. The action of the vanes pulls through the same volume of fluid with each rotation.

Multi-stage rotary-vane vacuum pumps, which force the fluid through a series of two or more rotary-vane pump mechanisms to enhance the pressure, can attain vacuum pressures as low as 10−6 bar (0.1 Pa).

Uses

Vane pumps are commonly used as high-pressure hydraulic pumps and in automobiles, including supercharging, power-steering, air conditioning, and automatic-transmission pumps[ citation needed ]. Pumps for mid-range pressures include applications such as carbonators for fountain soft-drink dispensers and espresso coffee machines[ citation needed ]. Furthermore, vane pumps can be used in low-pressure gas applications such as secondary air injection for auto exhaust emission control, or in low-pressure chemical vapor deposition systems[ citation needed ].

Rotary-vane pumps are also a common type of vacuum pump, with two-stage pumps able to reach pressures well below 10−6 bar. These are found in such applications as providing braking assistance in large trucks and diesel-powered passenger cars (whose engines do not generate intake vacuum) through a braking booster, in most light aircraft to drive gyroscopic flight instruments, in evacuating refrigerant lines during installation of air conditioners, in laboratory freeze dryers, and vacuum experiments in physics[ citation needed ]. In the vane pump, the pumped gas and the oil are mixed within the pump, and so they must be separated externally. Therefore, the inlet and the outlet have a large chamber, perhaps with swirl, where the oil drops fall out of the gas. Sometimes the inlet has louvers cooled by the room air (the pump is usually 40 K hotter) to condense cracked pumping oil and water, and let it drop back into the inlet. When these pumps are used in high-vacuum systems (where the inflow of gas into the pump becomes very low), a significant concern is contamination of the entire system by molecular oil back streaming.

History

Like many simple mechanisms, it is unclear when the rotary vane pump was invented. Agostino Ramelli's 1588 book Le diverse et artificiose machine del capitano Agostino Ramelli ("The Various and Ingenious Machines of Captain Agostino Ramelli") contains a description and an engraving of a rotary vane pump [1] along with other types of rotary pumps, which suggests that the design was known at the time. In more recent times, vane pumps also show up in 19th-century patent records. In 1858, a US patent was granted to one W. Pierce for "a new and useful Improvement in Rotary Pumps", which acknowledged as prior art sliding blades "used in connection with an eccentric inner surface". [2] In 1874, a Canadian patent was granted to Charles C. Barnes of Sackville, New Brunswick. [3] [4] [5] There have been various improvements since, including a variable vane pump for gases (1909). [6]

Variable-displacement vane pump

One of the major advantages of the vane pump is that the design readily lends itself to become a variable-displacement pump, rather than a fixed-displacement pump such as a spur-gear or a gerotor pump. The centerline distance from the rotor to the eccentric ring is used to determine the pump's displacement. By allowing the eccentric ring to pivot or translate relative to the rotor, the displacement can be varied. It is even possible for a vane pump to pump in reverse if the eccentric ring moves far enough. However, performance cannot be optimized to pump in both directions. This can make for a very interesting hydraulic-control oil pump.

A variable-displacement vane pump is used as an energy-saving device and has been used in many applications, including automotive transmissions, for over 30 years. [7] [8] [9]

Materials

See also

Related Research Articles

<span class="mw-page-title-main">Pump</span> Device that imparts energy to the fluids by mechanical action

A pump is a device that moves fluids, or sometimes slurries, by mechanical action, typically converted from electrical energy into hydraulic or pneumatic energy.

<span class="mw-page-title-main">Vacuum pump</span> Equipment generating a relative vacuum

A vacuum pump is a type of pump device that draws gas particles from a sealed volume in order to leave behind a partial vacuum. The first vacuum pump was invented in 1650 by Otto von Guericke, and was preceded by the suction pump, which dates to antiquity.

<span class="mw-page-title-main">Valve</span> Flow control device

A valve is a device or natural object that regulates, directs or controls the flow of a fluid by opening, closing, or partially obstructing various passageways. Valves are technically fittings, but are usually discussed as a separate category. In an open valve, fluid flows in a direction from higher pressure to lower pressure. The word is derived from the Latin valva, the moving part of a door, in turn from volvere, to turn, roll.

Flow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below:

<span class="mw-page-title-main">Roots blower</span> A positive displacement lobe pump

The Roots blower is a positive displacement lobe pump which operates by pumping a fluid with a pair of meshing lobes resembling a set of stretched gears. Fluid is trapped in pockets surrounding the lobes and carried from the intake side to the exhaust.

<span class="mw-page-title-main">Progressing cavity pump</span> Type of rotary pump with helical rotor

A progressing cavity pump is a type of positive displacement pump and is also known as a progressive cavity pump, progg cavity pump, eccentric screw pump or cavity pump. It transfers fluid by means of the progress, through the pump, of a sequence of small, fixed shape, discrete cavities, as its rotor is turned. This leads to the volumetric flow rate being proportional to the rotation rate (bidirectionally) and to low levels of shearing being applied to the pumped fluid.

<span class="mw-page-title-main">Air compressor</span> Machine to pressurize air

An air compressor is a machine that takes ambient air from the surroundings and discharges it at a higher pressure. It is an application of a gas compressor and a pneumatic device that converts mechanical power into potential energy stored in compressed air, which has many uses. A common application is to compress air into a storage tank, for immediate or later use. When the delivery pressure reaches its set upper limit, the compressor is shut off, or the excess air is released through an overpressure valve. The compressed air is stored in the tank until it is needed. The pressure energy provided by the compressed air can be used for a variety of applications such as pneumatic tools as it is released. When tank pressure reaches its lower limit, the air compressor turns on again and re-pressurizes the tank. A compressor is different from a pump because it works on a gas, while pumps work on a liquid.

<span class="mw-page-title-main">Compressor</span> Machine to increase pressure of gas by reducing its volume

A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor.

<span class="mw-page-title-main">Scroll compressor</span> Air compressor

A scroll compressor is a device for compressing air or refrigerant. It is used in air conditioning equipment, as an automobile supercharger and as a vacuum pump. Many residential central heat pump and air conditioning systems and a few automotive air conditioning systems employ a scroll compressor instead of the more traditional rotary, reciprocating, and wobble-plate compressors.

<span class="mw-page-title-main">Liquid-ring pump</span> Type of rotating positive-displacement pump.

A liquid-ring pump is a rotating positive-displacement gas pump, with liquid under centrifugal force acting as a seal.

<span class="mw-page-title-main">Hydristor</span>

Hydristor is a joining of the words 'hydraulic' and 'transistor'. The device invented by Tom Kasmer in 1996 and is based on the dual pressure balanced hydraulic vane pump invented by Harry F. Vickers in 1925.

<span class="mw-page-title-main">Axial piston pump</span> Positive-displacement pump

An axial piston pump is a positive displacement pump that has a number of pistons in a circular array within a cylinder block.

<span class="mw-page-title-main">Rotary-screw compressor</span> Gas compressor using a rotary positive-displacement mechanism

A rotary-screw compressor is a type of gas compressor, such as an air compressor, that uses a rotary-type positive-displacement mechanism. These compressors are common in industrial applications and replace more traditional piston compressors where larger volumes of compressed gas are needed, e.g. for large refrigeration cycles such as chillers, or for compressed air systems to operate air-driven tools such as jackhammers and impact wrenches. For smaller rotor sizes the inherent leakage in the rotors becomes much more significant, leading to this type of mechanism being less suitable for smaller compressors than piston compressors.

<span class="mw-page-title-main">Gerotor</span> Pistonless trochoidal rotor engine

A gerotor is a positive displacement pump. The name gerotor is derived from "generated rotor." A gerotor unit consists of an inner and an outer rotor. The inner rotor has n teeth, while the outer rotor has n + 1 teeth, with n defined as a natural number greater than or equal to 2. The axis of the inner rotor is offset from the axis of the outer rotor and both rotors rotate on their respective axes. The geometry of the two rotors partitions the volume between them into n different dynamically-changing volumes. During the assembly's rotation cycle, each of these volumes changes continuously, so any given volume first increases, and then decreases. An increase creates a vacuum. This vacuum creates suction, and hence, this part of the cycle is where the inlet is located. As a volume decreases, compression occurs. During this compression period, fluids can be pumped or, if they are gaseous fluids, compressed.

<span class="mw-page-title-main">Lobe pump</span>

A lobe pump, or rotary lobe pump, is a type of positive displacement pump. It is similar to a gear pump except the lobes are designed to almost meet, rather than touch and turn each other. An early example of a lobe pump is the Roots Blower, patented in 1860 to blow combustion air to melt iron in blast furnaces, but now more commonly used as an engine supercharger.

<span class="mw-page-title-main">Hydraulic motor</span> Machine converting flow into rotation

A hydraulic motor is a mechanical actuator that converts hydraulic pressure and flow into torque and angular displacement (rotation). The hydraulic motor is the rotary counterpart of the hydraulic cylinder as a linear actuator. Most broadly, the category of devices called hydraulic motors has sometimes included those that run on hydropower but in today's terminology the name usually refers more specifically to motors that use hydraulic fluid as part of closed hydraulic circuits in modern hydraulic machinery.

<span class="mw-page-title-main">Hydraulic pump</span> Mechanical power source

A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy. Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. They generate flow with enough power to overcome pressure induced by a load at the pump outlet. When a hydraulic pump operates, it creates a vacuum at the pump inlet, which forces liquid from the reservoir into the inlet line to the pump and by mechanical action delivers this liquid to the pump outlet and forces it into the hydraulic system. Hydrostatic pumps are positive displacement pumps while hydrodynamic pumps can be fixed displacement pumps, in which the displacement cannot be adjusted, or variable displacement pumps, which have a more complicated construction that allows the displacement to be adjusted. Hydrodynamic pumps are more frequent in day-to-day life. Hydrostatic pumps of various types all work on the principle of Pascal's law.

A plenum chamber is a pressurised housing containing a fluid at positive pressure. One of its functions is to equalise pressure for more even distribution, compensating for irregular supply or demand. It is typically relatively large in volume and thus has relatively low velocity compared to the system's other components. In wind tunnels, rockets, and many flow applications, it is a chamber upstream on the fluid flow where the fluid initially resides. It can also work as an acoustic silencer.

A rotodynamic pump is a kinetic machine in which energy is continuously imparted to the pumped fluid by means of a rotating impeller, propeller, or rotor, in contrast to a positive-displacement pump in which a fluid is moved by trapping a fixed amount of fluid and forcing the trapped volume into the pump's discharge. Examples of rotodynamic pumps include adding kinetic energy to a fluid such as by using a centrifugal pump to increase fluid velocity or pressure.

The guided-rotor compressor (GRC) is a positive-displacement rotary gas compressor. The compression volume is defined by the trochoidally rotating rotor mounted on an eccentric drive shaft with a typical 80 to 85% adiabatic efficiency.

References

  1. "Plate 108: Device for two men to drain water from a marsh or foundation".
  2. "Rotary pump".
  3. Mario Theriault, Great Maritime Inventions 1833-1950, Goose Lane Editions, 2001, p. 53.
  4. Bill Snowdon, "Charles C. Barnes: Farmer, Fisherman, Ship-builder, Inventor", in The White Fence, Issue #54, February 2012, Tantramar Heritage Trust"
  5. CA 3559A,Charles C. Barnes,"Rotary Pump",published 1874-06-15
  6. US 878528,Hoffmann, C.,"Rotary pump for gases",published 1906,issued 1908
  7. Vane Pumps: DAE Pumps' Rotary Vane & Vacuum Pumps. Retrieved from: https://www.daepumps.com
  8. Rotary Vane Pump Guide & Sliding Vane Pump Design | Castle Pumps. Retrieved from: https://www.castlepumps.com
  9. What is a Rotary Vane Pump and How Does it Work? - Anderson Process. Retrieved from: https://www.andersonprocess.com