Rotational Brownian motion (astronomy)

Last updated

In astronomy, rotational Brownian motion is the random walk in orientation of a binary star's orbital plane, induced by gravitational perturbations from passing stars.

Random walk mathematical formalization of a path that consists of a succession of random steps

A random walk is a mathematical object, known as a stochastic or random process, that describes a path that consists of a succession of random steps on some mathematical space such as the integers. An elementary example of a random walk is the random walk on the integer number line, , which starts at 0 and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas, the search path of a foraging animal, the price of a fluctuating stock and the financial status of a gambler: all can be approximated by random walk models, even though they may not be truly random in reality. As illustrated by those examples, random walks have applications to engineering and many scientific fields including ecology, psychology, computer science, physics, chemistry, biology as well as economics. Random walks explain the observed behaviors of many processes in these fields, and thus serve as a fundamental model for the recorded stochastic activity. As a more mathematical application, the value of π can be approximated by the use of random walk in an agent-based modeling environment. The term random walk was first introduced by Karl Pearson in 1905.

Binary star star system consisting of two stars

A binary star is a star system consisting of two stars orbiting around their common barycenter. Systems of two or more stars are called multiple star systems. These systems, especially when more distant, often appear to the unaided eye as a single point of light, and are then revealed as multiple by other means.

Contents

Theory

Consider a binary that consists of two massive objects (stars, black holes etc.) and that is embedded in a stellar system containing a large number of stars. Let and be the masses of the two components of the binary whose total mass is . A field star that approaches the binary with impact parameter and velocity passes a distance from the binary, where

Impact parameter

The impact parameter is defined as the perpendicular distance between the path of a projectile and the center of a potential field created by an object that the projectile is approaching. It is often referred to in nuclear physics and in classical mechanics.

the latter expression is valid in the limit that gravitational focusing dominates the encounter rate. The rate of encounters with stars that interact strongly with the binary, i.e. that satisfy , is approximately where and are the number density and velocity dispersion of the field stars and is the semi-major axis of the binary.

As it passes near the binary, the field star experiences a change in velocity of order

,

where is the relative velocity of the two stars in the binary. The change in the field star's specific angular momentum with respect to the binary, , is then ΔlaVbin. Conservation of angular momentum implies that the binary's angular momentum changes by Δlbin ≈ -(m/μ12l where m is the mass of a field star and μ12 is the binary reduced mass. Changes in the magnitude of lbin correspond to changes in the binary's orbital eccentricity via the relation e = 1 - lb2/GM12μ12a. Changes in the direction of lbin correspond to changes in the orientation of the binary, leading to rotational diffusion. The rotational diffusion coefficient is

In physics, the reduced mass is the "effective" inertial mass appearing in the two-body problem of Newtonian mechanics. It is a quantity which allows the two-body problem to be solved as if it were a one-body problem. Note, however, that the mass determining the gravitational force is not reduced. In the computation one mass can be replaced with the reduced mass, if this is compensated by replacing the other mass with the sum of both masses. The reduced mass is frequently denoted by (mu), although the standard gravitational parameter is also denoted by . It has the dimensions of mass, and SI unit kg.

where ρ = mn is the mass density of field stars.

Let F(θ,t) be the probability that the rotation axis of the binary is oriented at angle θ at time t. The evolution equation for F is [1]

If <Δξ2>, a, ρ and σ are constant in time, this becomes

where μ = cos θ and τ is the time in units of the relaxation time trel, where

The solution to this equation states that the expectation value of μ decays with time as

Hence, trel is the time constant for the binary's orientation to be randomized by torques from field stars.

Applications

Rotational Brownian motion was first discussed in the context of binary supermassive black holes at the centers of galaxies. [2] Perturbations from passing stars can alter the orbital plane of such a binary, which in turn alters the direction of the spin axis of the single black hole that forms when the two coalesce.

Supermassive black hole Largest type of black hole; usually found at the centers of galaxies

A supermassive black hole is the largest type of black hole, containing a mass of the order of hundreds of thousands to billions of times the mass of the Sun (M). Black holes are a class of astronomical object that have undergone gravitational collapse, leaving behind spheroidal regions of space from which nothing can escape, not even light. Observational evidence indicates that nearly all large galaxies contain a supermassive black hole, located at the galaxy's center. In the case of the Milky Way, the supermassive black hole corresponds to the location of Sagittarius A* at the Galactic Core. Accretion of interstellar gas onto supermassive black holes is the process responsible for powering quasars and other types of active galactic nuclei.

Rotational Brownian motion is often observed in N-body simulations of galaxies containing binary black holes. [3] [4] The massive binary sinks to the center of the galaxy via dynamical friction where it interacts with passing stars. The same gravitational perturbations that induce a random walk in the orientation of the binary, also cause the binary to shrink, via the gravitational slingshot. It can be shown [2] that the rms change in the binary's orientation, from the time the binary forms until the two black holes collide, is roughly

In a real galaxy, the two black holes would eventually coalesce due to emission of gravitational waves. The spin axis of the coalesced hole will be aligned with the angular momentum axis of the orbit of the pre-existing binary. Hence, a mechanism like rotational Brownian motion that affects the orbits of binary black holes can also affect the distribution of black hole spins. This may explain in part why the spin axes of supermassive black holes appear to be randomly aligned with respect to their host galaxies. [5]

Related Research Articles

Acoustic theory is a scientific field that relates to the description of sound waves. It derives from fluid dynamics. See acoustics for the engineering approach.

Kerr metric Rotating solution of Einsteins equations, featuring axisymmetric ergosphere and event horizon around a singularity

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially-symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

In information geometry, the Fisher information metric is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability measures defined on a common probability space. It can be used to calculate the informational difference between measurements.

In particle and condensed matter physics, Goldstone bosons or Nambu–Goldstone bosons (NGBs) are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries. They were discovered by Yoichiro Nambu in the context of the BCS superconductivity mechanism, and subsequently elucidated by Jeffrey Goldstone, and systematically generalized in the context of quantum field theory.

Gravitational anomaly anomalies that can arise in gauge theories coupled to gravity

In theoretical physics, a gravitational anomaly is an example of a gauge anomaly: it is an effect of quantum mechanics — usually a one-loop diagram—that invalidates the general covariance of a theory of general relativity combined with some other fields. The adjective "gravitational" is derived from the symmetry of a gravitational theory, namely from general covariance. A gravitational anomaly is generally synonymous with diffeomorphism anomaly, since general covariance is symmetry under coordinate reparametrization; i.e. diffeomorphism.

In quantum field theory, a quartic interaction is a type of self-interaction in a scalar field. Other types of quartic interactions may be found under the topic of four-fermion interactions. A classical free scalar field satisfies the Klein–Gordon equation. If a scalar field is denoted , a quartic interaction is represented by adding a potential term to the Lagrangian density. The coupling constant is dimensionless in 4-dimensional spacetime.

Kerr–Newman metric

The Kerr–Newman metric is the most general asymptotically flat, stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged, rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions, that is, of solutions to the Einstein–Maxwell equations which account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.

In general relativity, the metric tensor is the fundamental object of study. It may loosely be thought of as a generalization of the gravitational potential of Newtonian gravitation. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

Ornstein–Uhlenbeck process

In mathematics, the Ornstein–Uhlenbeck process is a stochastic process with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive Brownian particle under the influence of friction, also called a Damped Random Walk (DRW). It is named after Leonard Ornstein and George Eugene Uhlenbeck.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

Gravitational lensing formalism

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

Spin-flip A sudden change of spin axis caused by merging with another black hole

A black hole spin-flip occurs when the spin axis of a rotating black hole undergoes a sudden change in orientation due to absorption of a second (smaller) black hole. Spin-flips are believed to be a consequence of galaxy mergers, when two supermassive black holes form a bound pair at the center of the merged galaxy and coalesce after emitting gravitational waves. Spin-flips are significant astrophysically since a number of physical processes are associated with black hole spins; for instance, jets in active galaxies are believed to be launched parallel to the spin axes of supermassive black holes. A change in the rotation axis of a black hole due to a spin-flip would therefore result in a change in the direction of the jet.

Wrapped normal distribution

In probability theory and directional statistics, a wrapped normal distribution is a wrapped probability distribution that results from the "wrapping" of the normal distribution around the unit circle. It finds application in the theory of Brownian motion and is a solution to the heat equation for periodic boundary conditions. It is closely approximated by the von Mises distribution, which, due to its mathematical simplicity and tractability, is the most commonly used distribution in directional statistics.

Variance gamma process

In the theory of stochastic processes, a part of the mathematical theory of probability, the variance gamma process (VG), also known as Laplace motion, is a Lévy process determined by a random time change. The process has finite moments distinguishing it from many Lévy processes. There is no diffusion component in the VG process and it is thus a pure jump process. The increments are independent and follow a Variance-gamma distribution, which is a generalization of the Laplace distribution.

The Carter constant is a conserved quantity for motion around black holes in the general relativistic formulation of gravity. Carter's constant was derived for a spinning, charged black hole by Australian theoretical physicist Brandon Carter in 1968. Carter's constant along with the energy, axial angular momentum, and particle rest mass provide the four conserved quantities necessary to uniquely determine all orbits in the Kerr–Newman spacetime.

Experimental uncertainty analysis is a technique that analyses a derived quantity, based on the uncertainties in the experimentally measured quantities that are used in some form of mathematical relationship ("model") to calculate that derived quantity. The model used to convert the measurements into the derived quantity is usually based on fundamental principles of a science or engineering discipline.

In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. These concepts were introduced by Michael Berry in a paper published in 1984 emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.

In a paramagnetic material, the magnetization of the material is (approximately) directly proportional to an applied magnetic field. However, if the material is heated, this proportionality is reduced: for a fixed value of the field, the magnetization is (approximately) inversely proportional to temperature. This fact is encapsulated by Curie's law, after Pierre Curie:

References

  1. Debye, P. (1929). Polar Molecules . Dover.
  2. 1 2 Merritt, D. (2002), Rotational Brownian Motion of a Massive Binary, The Astrophysical Journal, 568, 998-1003.
  3. Löckmann, U. and Baumgardt, H. (2008), Tracing intermediate-mass black holes in the Galactic Centre, Monthly Notices of the Royal Astronomical Society , 384, 323-330.
  4. Matsubayashi, T., Makino, J. and Ebisuzaki, T. (2007), Evolution of an IMBH in the Galactic Nucleus with a Massive Central Black Hole, The Astrophysical Journal, 656, 879-896
  5. Kinney, A. et al. (2000), Jet Directions in Seyfert Galaxies, The Astrophysical Journal, 537, 152-177