Rubinstein bargaining model

Last updated

A Rubinstein bargaining model refers to a class of bargaining games that feature alternating offers through an infinite time horizon. The original proof is due to Ariel Rubinstein in a 1982 paper. [1] For a long time, the solution to this type of game was a mystery; thus, Rubinstein's solution is one of the most influential findings in game theory.

Contents

Requirements

A standard Rubinstein bargaining model has the following elements:

Solution

Consider the typical Rubinstein bargaining game in which two players decide how to divide a pie of size 1. An offer by a player takes the form x = (x1, x2) with x1 + x2 = 1 and . Assume the players discount at the geometric rate of d, which can be interpreted as cost of delay or "pie spoiling". That is, 1 step later, the pie is worth d times what it was, for some d with 0<d<1.

Any x can be a Nash equilibrium outcome of this game, resulting from the following strategy profile: Player 1 always proposes x = (x1, x2) and only accepts offers x' where x1' ≥ x1. Player 2 always proposes x = (x1, x2) and only accepts offers x' where x2' ≥ x2.

In the above Nash equilibrium, player 2's threat to reject any offer less than x2 is not credible. In the subgame where player 1 did offer x2' where x2 > x2' > dx2, clearly player 2's best response is to accept.

To derive a sufficient condition for subgame perfect equilibrium, let x = (x1, x2) and y = (y1, y2) be two divisions of the pie with the following property:

  1. x2 = dy2, and
  2. y1 = dx1,

i.e.

  1. x = (x1, x2), and
  2. y = (dx1, ).

Consider the strategy profile where player 1 offers x and accepts no less than y1, and player 2 offers y and accepts no less than x2. Player 2 is now indifferent between accepting and rejecting, therefore the threat to reject lesser offers is now credible. Same applies to a subgame in which it is player 1's turn to decide whether to accept or reject. In this subgame perfect equilibrium, player 1 gets 1/(1+d) while player 2 gets d/(1+d). This subgame perfect equilibrium is essentially unique.

A Generalization

When the discount factor is different for the two players, for the first one and for the second, let us denote the value for the first player as . Then a reasoning similar to the above gives


yielding . This expression reduces to the original one for .

Desirability

Rubinstein bargaining has become pervasive in the literature because it has many desirable qualities:

Related Research Articles

In game theory, the Nash equilibrium, named after the mathematician John Forbes Nash Jr., is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by changing only their own strategy. The principle of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to competing firms choosing outputs.

In game theory, a cooperative game is a game with competition between groups of players ("coalitions") due to the possibility of external enforcement of cooperative behavior. Those are opposed to non-cooperative games in which there is either no possibility to forge alliances or all agreements need to be self-enforcing.

Ultimatum game Game in economic experiments

The ultimatum game is a game that has become a popular instrument of economic experiments. An early description is by Nobel laureate John Harsanyi in 1961. One player, the proposer, is endowed with a sum of money. The proposer is tasked with splitting it with another player, the responder. Once the proposer communicates his decision, the responder may accept it or reject it. If the responder accepts, the money is split per the proposal; if the responder rejects, both players receive nothing. Both players know in advance the consequences of the responder accepting or rejecting the offer.

In game theory, the centipede game, first introduced by Robert Rosenthal in 1981, is an extensive form game in which two players take turns choosing either to take a slightly larger share of an increasing pot, or to pass the pot to the other player. The payoffs are arranged so that if one passes the pot to one's opponent and the opponent takes the pot on the next round, one receives slightly less than if one had taken the pot on this round, but after an additional switch the potential payoff will be higher. Therefore, although at each round a player has an incentive to take the pot, it would be better for them to wait. Although the traditional centipede game had a limit of 100 rounds, any game with this structure but a different number of rounds is called a centipede game.

In game theory, a subgame is any part of a game that meets the following criteria :

  1. It has a single initial node that is the only member of that node's information set.
  2. If a node is contained in the subgame then so are all of its successors.
  3. If a node in a particular information set is in the subgame then all members of that information set belong to the subgame.

In game theory, grim trigger is a trigger strategy for a repeated game.

Solution concept

In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.

An extensive-form game is a specification of a game in game theory, allowing for the explicit representation of a number of key aspects, like the sequencing of players' possible moves, their choices at every decision point, the information each player has about the other player's moves when they make a decision, and their payoffs for all possible game outcomes. Extensive-form games also allow for the representation of incomplete information in the form of chance events modeled as "moves by nature".

In game theory, a Perfect Bayesian Equilibrium (PBE) is an equilibrium concept relevant for dynamic games with incomplete information. It is a refinement of Bayesian Nash equilibrium (BNE). A perfect Bayesian equilibrium has two components -- strategies and beliefs:

Ariel Rubinstein Israeli economist (born 1951)

Ariel Rubinstein is an Israeli economist who works in economic theory, game theory and bounded rationality.

Backward induction is the process of reasoning backwards in time, from the end of a problem or situation, to determine a sequence of optimal actions. It proceeds by examining the last point at which a decision is to be made and then identifying what action would be most optimal at that moment. Using this information, one can then determine what to do at the second-to-last time of decision. This process continues backwards until one has determined the best action for every possible situation at every point in time. Backward induction was first used in 1875 by Arthur Cayley, who uncovered the method while trying to solve the infamous Secretary problem.

In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.

In game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game. The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of his or her current action on the future actions of other players; this impact is sometimes called his or her reputation. Single stage game or single shot game are names for non-repeated games.

In game theory, the war of attrition is a dynamic timing game in which players choose a time to stop, and fundamentally trade off the strategic gains from outlasting other players and the real costs expended with the passage of time. Its precise opposite is the pre-emption game, in which players elect a time to stop, and fundamentally trade off the strategic costs from outlasting other players and the real gains occasioned by the passage of time. The model was originally formulated by John Maynard Smith; a mixed evolutionarily stable strategy (ESS) was determined by Bishop & Cannings. An example is a second price all-pay auction, in which the prize goes to the player with the highest bid and each player pays the loser's low bid.

In game theory, a Manipulated Nash equilibrium or MAPNASH is a refinement of subgame perfect equilibrium used in dynamic games of imperfect information. Informally, a strategy set is a MAPNASH of a game if it would be a subgame perfect equilibrium of the game if the game had perfect information. MAPNASH were first suggested by Amershi, Sadanand, and Sadanand (1988) and has been discussed in several papers since. It is a solution concept based on how players think about other players' thought processes.

In game theory, a subgame perfect equilibrium is a refinement of a Nash equilibrium used in dynamic games. A strategy profile is a subgame perfect equilibrium if it represents a Nash equilibrium of every subgame of the original game. Informally, this means that at any point in the game, the players' behavior from that point onward should represent a Nash equilibrium of the continuation game, no matter what happened before. Every finite extensive game with perfect recall has a subgame perfect equilibrium. Perfect recall is a term introduced by Harold W. Kuhn in 1953 and "equivalent to the assertion that each player is allowed by the rules of the game to remember everything he knew at previous moves and all of his choices at those moves".

Cooperative bargaining is a process in which two people decide how to share a surplus that they can jointly generate. In many cases, the surplus created by the two players can be shared in many ways, forcing the players to negotiate which division of payoffs to choose. Such surplus-sharing problems are faced by management and labor in the division of a firm's profit, by trade partners in the specification of the terms of trade, and more.

The one-shot deviation principle is the principle of optimality of dynamic programming applied to game theory. It says that a strategy profile of a finite extensive-form game is a subgame perfect equilibrium (SPE) if and only if there exist no profitable one-shot deviations for each subgame and every player. In simpler terms, if no player can increase their payoffs by deviating a single decision, or period, from their original strategy, then the strategy that they have chosen is a SPE. As a result, no player can profit from deviating from the strategy for one period and then reverting to the strategy.

Squential bargaining is a structured form of bargaining between two participants, in which the participants take turns in making offers. Initially, person #1 has the right to make an offer to person #2. If person #2 accepts the offer, then an agreement is reached and the process ends. If person #2 rejects the offer, then the participants switch turns, and now it is the turn of person #2 to make an offer. The people keep switching turns until either an agreement is reached, or the process ends with a disagreement due to a certain end condition. Several end conditions are common, for example:

A strategic bankruptcy problem is a variant of a bankruptcy problem in which claimants may act strategically, that is, they may manipulate their claims or their behavior. There are various kinds of strategic bankruptcy problems, differing in the assumptions about the possible ways in which claimants may manipulate.

References

  1. Rubinstein, Ariel (1982). "Perfect Equilibrium in a Bargaining Model" (PDF). Econometrica. 50 (1): 97–109. CiteSeerX   10.1.1.295.1434 . doi:10.2307/1912531. JSTOR   1912531.

Further reading