Rule 110

Last updated

The Rule 110 cellular automaton (often called simply Rule 110) [lower-alpha 1] is an elementary cellular automaton with interesting behavior on the boundary between stability and chaos. In this respect, it is similar to Conway's Game of Life. Like Life, Rule 110 with a particular repeating background pattern is known to be Turing complete. [2] This implies that, in principle, any calculation or computer program can be simulated using this automaton.

Contents

An example run of the rule 110 cellular automaton over 256 iterations, starting from a single cell. Sample run of Rule 110 elementary cellular automaton, starting from single cell.png
An example run of the rule 110 cellular automaton over 256 iterations, starting from a single cell.

Definition

In an elementary cellular automaton, a one-dimensional pattern of 0s and 1s evolves according to a simple set of rules. Whether a point in the pattern will be 0 or 1 in the new generation depends on its current value, as well as on those of its two neighbors.

An animation of the way the rules of a 1D cellular automaton determine the next generation, using Rule 110. One-d-cellular-automaton-rule-110.gif
An animation of the way the rules of a 1D cellular automaton determine the next generation, using Rule 110.

The Rule 110 automaton has the following set of rules:

Current pattern111110101100011010001000
New state for center cell01101110

The name "Rule 110" derives from the fact that this rule can be summarized in the binary sequence 01101110; interpreted as a binary number, this corresponds to the decimal value 110. This is the Wolfram code naming scheme.

History

In 2004, Matthew Cook published a proof that Rule 110 with a particular repeating background pattern is Turing complete, i.e., capable of universal computation, which Stephen Wolfram had conjectured in 1985. [2] Cook presented his proof at the Santa Fe Institute conference CA98 before publication of Wolfram's book A New Kind of Science . This resulted in a legal affair based on a non-disclosure agreement with Wolfram Research. [3] Wolfram Research blocked publication of Cook's proof for several years. [4]

Interesting properties

Among the 88 possible unique elementary cellular automata, Rule 110 is the only one for which Turing completeness has been directly proven, although proofs for several similar rules follow as simple corollaries (e.g. Rule 124, which is the horizontal reflection of Rule 110). Rule 110 is arguably the simplest known Turing complete system. [2] [5]

Rule 110, like the Game of Life, exhibits what Wolfram calls "Class 4 behavior", which is neither completely stable nor completely chaotic. Localized structures appear and interact in complex ways. [6]

Matthew Cook proved Rule 110 capable of supporting universal computation by successively emulating cyclic tag systems, then 2-tag system, and then Turing machines. The final stage has exponential time overhead because the Turing machine's tape is encoded with a unary numeral system. Neary and Woods (2006) presented a different construction that replaces 2-tag systems with clockwise Turing machines and has polynomial overhead. [7]

The proof of universality

Matthew Cook presented his proof of the universality of Rule 110 at a Santa Fe Institute conference, held before the publication of A New Kind of Science . Wolfram Research claimed that this presentation violated Cook's nondisclosure agreement with his employer, and obtained a court order excluding Cook's paper from the published conference proceedings. The existence of Cook's proof nevertheless became known. Interest in his proof stemmed not so much from its result as from its methods, specifically from the technical details of its construction. [8] The character of Cook's proof differs considerably from the discussion of Rule 110 in A New Kind of Science. Cook has since written a paper setting out his complete proof. [2]

Cook proved that Rule 110 was universal (or Turing complete) by showing it was possible to use the rule to emulate another computational model, the cyclic tag system, which is known to be universal. He first isolated a number of spaceships, self-perpetuating localized patterns, that could be constructed on an infinitely repeating pattern in a Rule 110 universe. He then devised a way for combinations of these structures to interact in a manner that could be exploited for computation.

Spaceships in Rule 110

The function of the universal machine in Rule 110 requires a finite number of localized patterns to be embedded within an infinitely repeating background pattern. The background pattern is fourteen cells wide and repeats itself exactly every seven iterations. The pattern is 00010011011111.

Three localized patterns are of particular importance in the Rule 110 universal machine. They are shown in the image below, surrounded by the repeating background pattern. The leftmost structure shifts to the right two cells and repeats every three generations. It comprises the sequence 0001110111 surrounded by the background pattern given above, as well as two different evolutions of this sequence.

In the figures, time elapses from top to bottom: the top line represents the initial state, and each following line the state at the next time.

Ca110-structures2.png

The center structure shifts left eight cells and repeats every thirty generations. It comprises the sequence 1001111 surrounded by the background pattern given above, as well as twenty-nine different evolutions of this sequence.

The rightmost structure remains stationary and repeats every seven generations. It comprises the sequence 111 surrounded by the background pattern given above, as well as five different evolutions of this sequence.

Below is an image showing the first two structures passing through each other without interacting other than by translation (left), and interacting to form the third structure (right).

Ca110-interaction2.png

There are numerous other spaceships in Rule 110, but they do not feature as prominently in the universality proof.

Constructing the cyclic tag system

The cyclic tag system machinery has three main components:

The initial spacing between these components is of utmost importance. In order for the cellular automaton to implement the cyclic tag system, the automaton's initial conditions must be carefully selected so that the various localized structures contained therein interact in a highly ordered way.

The data string in the cyclic tag system is represented by a series of stationary repeating structures of the type shown above. Varying amounts of horizontal space between these structures serve to differentiate 1 symbols from 0 symbols. These symbols represent the word on which the cyclic tag system is operating, and the first such symbol is destroyed upon consideration of every production rule. When this leading symbol is a 1, new symbols are added to the end of the string; when it is 0, no new symbols are added. The mechanism for achieving this is described below.

Entering from the right are a series of left-moving structures of the type shown above, separated by varying amounts of horizontal space. Large numbers of these structures are combined with different spacings to represent 0s and 1s in the cyclic tag system's production rules. Because the tag system's production rules are known at the time of creation of the program, and infinitely repeating, the patterns of 0s and 1s at the initial condition can be represented by an infinitely repeating string. Each production rule is separated from the next by another structure known as a rule separator (or block separator), which moves towards the left at the same rate as the encoding of the production rules.

When a left-moving rule separator encounters a stationary symbol in the cyclic tag system's data string, it causes the first symbol it encounters to be destroyed. However, its subsequent behavior varies depending on whether the symbol encoded by the string had been a 0 or a 1. If a 0, the rule separator changes into a new structure which blocks the incoming production rule. This new structure is destroyed when it encounters the next rule separator.

If, on the other hand, the symbol in the string was a 1, the rule separator changes into a new structure which admits the incoming production rule. Although the new structure is again destroyed when it encounters the next rule separator, it first allows a series of structures to pass through towards the left. These structures are then made to append themselves to the end of the cyclic tag system's data string. This final transformation is accomplished by means of a series of infinitely repeating, right-moving clock pulses in the right-moving pattern shown above. The clock pulses transform incoming left-moving 1 symbols from a production rule into stationary 1 symbols of the data string, and incoming 0 symbols from a production rule into stationary 0 symbols of the data string.

Cyclic tag system working

Cts-diagram.jpg

The figure above is the schematic diagram of the reconstruction of a cyclic tag system in Rule 110.

See also

Notes

  1. 110 is the number 110, written in conventional decimal notation, and thus is pronounced as one pronounces nominal numbers ordinarily. For example, Stephen Wolfram pronounces the name "rule one-ten". [1]

Related Research Articles

<span class="mw-page-title-main">Turing machine</span> Computation model defining an abstract machine

A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm.

<span class="mw-page-title-main">Conway's Game of Life</span> Two-dimensional cellular automaton devised by J. H. Conway in 1970

The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is a zero-player game, meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial configuration and observing how it evolves. It is Turing complete and can simulate a universal constructor or any other Turing machine.

<span class="mw-page-title-main">Cellular automaton</span> Discrete model studied in computer science

A cellular automaton is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling.

In computer science, a universal Turing machine (UTM) is a Turing machine capable of computing any computable sequence, as described by Alan Turing in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem". Common sense might say that a universal machine is impossible, but Turing proves that it is possible. He suggested that we may compare a man in the process of computing a real number to a machine which is only capable of a finite number of conditions q 1: q 2. .... qI; which will be called "m-configurations". He then described the operation of such machine, as described below, and argued:

It is my contention that these operations include all those which are used in the computation of a number.

<i>A New Kind of Science</i> Book by Stephen Wolfram

A New Kind of Science is a book by Stephen Wolfram, published by his company Wolfram Research under the imprint Wolfram Media in 2002. It contains an empirical and systematic study of computational systems such as cellular automata. Wolfram calls these systems simple programs and argues that the scientific philosophy and methods appropriate for the study of simple programs are relevant to other fields of science.

<span class="mw-page-title-main">Automata theory</span> Study of abstract machines and automata

Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science with close connections to mathematical logic. The word automata comes from the Greek word αὐτόματος, which means "self-acting, self-willed, self-moving". An automaton is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically. An automaton with a finite number of states is called a Finite Automaton (FA) or Finite-State Machine (FSM). The figure on the right illustrates a finite-state machine, which is a well-known type of automaton. This automaton consists of states and transitions. As the automaton sees a symbol of input, it makes a transition to another state, according to its transition function, which takes the previous state and current input symbol as its arguments.

<span class="mw-page-title-main">Langton's ant</span> Two-dimensional Turing machine with emergent behavior

Langton's ant is a two-dimensional universal Turing machine with a very simple set of rules but complex emergent behavior. It was invented by Chris Langton in 1986 and runs on a square lattice of black and white cells. The universality of Langton's ant was proven in 2000. The idea has been generalized in several different ways, such as turmites which add more colors and more states.

Matthew Cook is a mathematician and computer scientist who is best known for having proved Stephen Wolfram's conjecture that the Rule 110 cellular automaton is Turing-complete.

In the theory of computation, a tag system is a deterministic model of computation published by Emil Leon Post in 1943 as a simple form of a Post canonical system. A tag system may also be viewed as an abstract machine, called a Post tag machine —briefly, a finite-state machine whose only tape is a FIFO queue of unbounded length, such that in each transition the machine reads the symbol at the head of the queue, deletes a constant number of symbols from the head, and appends to the tail a symbol-string that depends solely on the first symbol read in this transition.

A cellular automaton (CA) is Life-like if it meets the following criteria:

<span class="mw-page-title-main">Seeds (cellular automaton)</span> 2D cellular automaton similar to Conways Game of Life

Seeds is a cellular automaton in the same family as the Game of Life, initially investigated by Brian Silverman and named by Mirek Wójtowicz. It consists of an infinite two-dimensional grid of cells, each of which may be in one of two states: on or off. Each cell is considered to have eight neighbors, as in Life. In each time step, a cell turns on or is "born" if it was off or "dead" but had exactly two neighbors that were on; all other cells turn off. Thus, in the notation describing the family of cellular automata containing Life, it is described by the rule B2/S.

<span class="mw-page-title-main">Rule 30</span> Elementary cellular automaton

Rule 30 is an elementary cellular automaton introduced by Stephen Wolfram in 1983. Using Wolfram's classification scheme, Rule 30 is a Class III rule, displaying aperiodic, chaotic behaviour.

<span class="mw-page-title-main">Cyclic cellular automaton</span>

A cyclic cellular automaton is a kind of cellular automaton rule developed by David Griffeath and studied by several other cellular automaton researchers. In this system, each cell remains unchanged until some neighboring cell has a modular value exactly one unit larger than that of the cell itself, at which point it copies its neighbor's value. One-dimensional cyclic cellular automata can be interpreted as systems of interacting particles, while cyclic cellular automata in higher dimensions exhibit complex spiraling behavior.

<span class="mw-page-title-main">Von Neumann universal constructor</span> Self-replicating cellular automaton

John von Neumann's universal constructor is a self-replicating machine in a cellular automaton (CA) environment. It was designed in the 1940s, without the use of a computer. The fundamental details of the machine were published in von Neumann's book Theory of Self-Reproducing Automata, completed in 1966 by Arthur W. Burks after von Neumann's death. While typically not as well known as von Neumann's other work, it is regarded as foundational for automata theory, complex systems, and artificial life. Indeed, Nobel Laureate Sydney Brenner considered Von Neumann's work on self-reproducing automata central to biological theory as well, allowing us to "discipline our thoughts about machines, both natural and artificial."

<span class="mw-page-title-main">Rule 184</span> Elementary cellular automaton

Rule 184 is a one-dimensional binary cellular automaton rule, notable for solving the majority problem as well as for its ability to simultaneously describe several, seemingly quite different, particle systems:

In his book A New Kind of Science, Stephen Wolfram described a universal 2-state 5-symbol Turing machine, and conjectured that a particular 2-state 3-symbol Turing machine might be universal as well.

<span class="mw-page-title-main">Rule 90</span> Elementary cellular automaton

In the mathematical study of cellular automata, Rule 90 is an elementary cellular automaton based on the exclusive or function. It consists of a one-dimensional array of cells, each of which can hold either a 0 or a 1 value. In each time step all values are simultaneously replaced by the exclusive or of their two neighboring values. Martin, Odlyzko & Wolfram (1984) call it "the simplest non-trivial cellular automaton", and it is described extensively in Stephen Wolfram's 2002 book A New Kind of Science.

The Curtis–Hedlund–Lyndon theorem is a mathematical characterization of cellular automata in terms of their symbolic dynamics. It is named after Morton L. Curtis, Gustav A. Hedlund, and Roger Lyndon; in his 1969 paper stating the theorem, Hedlund credited Curtis and Lyndon as co-discoverers. It has been called "one of the fundamental results in symbolic dynamics".

<span class="mw-page-title-main">Elementary cellular automaton</span> Mathematics concept

In mathematics and computability theory, an elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. There is an elementary cellular automaton which is capable of universal computation, and as such it is one of the simplest possible models of computation.

<span class="mw-page-title-main">Reversible cellular automaton</span> Cellular automaton that can be run backwards

A reversible cellular automaton is a cellular automaton in which every configuration has a unique predecessor. That is, it is a regular grid of cells, each containing a state drawn from a finite set of states, with a rule for updating all cells simultaneously based on the states of their neighbors, such that the previous state of any cell before an update can be determined uniquely from the updated states of all the cells. The time-reversed dynamics of a reversible cellular automaton can always be described by another cellular automaton rule, possibly on a much larger neighborhood.

References

  1. Stephen Wolfram (2003). A New Kind of Science - Stephen Wolfram. University of California Television (UCTV). Event occurs at 9:51. Retrieved 2023-06-19.
  2. 1 2 3 4 Cook (2004).
  3. Wolfram Research Inc v. Cook (2:00-cv-09357) (sometimes cited as "Wolfram Research Inc. v. Matthew Cook. 8/31 CV00-9357 CBM")
  4. Giles (2002).
  5. Wolfram (2002) , pp. 169, 675–691
  6. Wolfram (2002) , p. 229
  7. Neary & Woods (2006).
  8. Martinez, Genaro J.; Seck Tuoh Mora, Juan; Chapa, Sergio; Lemaitre, Christian (April 2019). "Brief notes and history computing in Mexico during 50 years". International Journal of Parallel, Emergent and Distributed Systems. 35 (2): 185–192. arXiv: 1905.07527 . doi:10.1080/17445760.2019.1608990. S2CID   150262966 . Retrieved 2020-04-15.

Works cited

Further reading