SAE J1269

Last updated
SAE J1269
Rolling Resistance Measurement Procedure for Passenger Car, Light Truck, and Highway Truck and Bus Tires
Tire Rolling Resistance Torque Method.jpg
SAE J1269 and SAE J2452 performed on new tires.
StatusPublished
Year started1979 (1979)
Latest version202012
December 22, 2020 (2020-12-22)
Organization SAE International
CommitteeHighway Tire Committee
Related standards SAE J2452, ISO 28580

SAE J1269 is a standard test defined by the Society of Automotive Engineers [1] to measure the rolling resistance of tires under conditions of thermal equilibrium. [2] [3] SAE J2452 is an alternative procedure for measuring rolling resistance under conditions similar to a vehicle coastdown event, where the tire is in a roughly isothermal condition (but not thermal equilibrium).

The rolling resistance coefficient (RRC) thus measured indicates the proportion of energy that is lost to the hysteresis of the material as the tire rolls.

Related Research Articles

<span class="mw-page-title-main">Thermistor</span> Type of resistor whose resistance varies with temperature

A thermistor is a semiconductor type of resistor whose resistance is strongly dependent on temperature, more so than in standard resistors. The word thermistor is a portmanteau of thermal and resistor.

The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or and is measured in W·m−1·K−1.

<span class="mw-page-title-main">Tire</span> Ring-shaped covering that fits around a wheels rim

A tire is a ring-shaped component that surrounds a wheel's rim to transfer a vehicle's load from the axle through the wheel to the ground and to provide traction on the surface over which the wheel travels. Most tires, such as those for automobiles and bicycles, are pneumatically inflated structures, providing a flexible cushion that absorbs shock as the tire rolls over rough features on the surface. Tires provide a footprint, called a contact patch, designed to match the vehicle's weight and the bearing on the surface that it rolls over by exerting a pressure that will avoid deforming the surface.

<span class="mw-page-title-main">SAE International</span> Professional association and standards organization for transport and other industries

SAE International is a global professional association and standards organization based in Warrendale, Pennsylvania, United States. Formerly the Society of Automotive Engineers, the organization adopted its current name in 2006 to reflect both its international membership and the increased scope of its activities beyond automotive engineering and the automotive industry to include aerospace and other transport industries, as well as commercial vehicles including autonomous vehicles such as self-driving cars, trucks, surface vessels, drones, and related technologies.

<span class="mw-page-title-main">Non-equilibrium thermodynamics</span> Branch of thermodynamics

Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities that represent an extrapolation of the variables used to specify the system in thermodynamic equilibrium. Non-equilibrium thermodynamics is concerned with transport processes and with the rates of chemical reactions.

<span class="mw-page-title-main">Gear oil</span> Lubricant used in vehicles and machinery

Gear oil is a lubricant made specifically for transmissions, transfer cases, and differentials in automobiles, trucks, and other machinery. It has high viscosity and usually contains organosulfur compounds. Some modern automatic transaxles do not use a heavy oil at all but lubricate with the lower viscosity hydraulic fluid, which is available at pressure within the automatic transmission. Gear oils account for about 20% of the lubricant market.

<span class="mw-page-title-main">Rolling resistance</span> Force resisting the motion when a body rolls on a surface

Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation of the wheel, roadbed, etc., is recovered when the pressure is removed. Two forms of this are hysteresis losses, and permanent (plastic) deformation of the object or the surface. Note that the slippage between the wheel and the surface also results in energy dissipation. Although some researchers have included this term in rolling resistance, some suggest that this dissipation term should be treated separately from rolling resistance because it is due to the applied torque to the wheel and the resultant slip between the wheel and ground, which is called slip loss or slip resistance. In addition, only the so-called slip resistance involves friction, therefore the name "rolling friction" is to an extent a misnomer.

Gasoline gallon equivalent (GGE) or gasoline-equivalent gallon (GEG) is the amount of an alternative fuel it takes to equal the energy content of one liquid gallon of gasoline. GGE allows consumers to compare the energy content of competing fuels against a commonly known fuel, namely gasoline.

Traction, traction force or tractive force is a force used to generate motion between a body and a tangential surface, through the use of either dry friction or shear force. It has important applications in vehicles, as in tractive effort.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain one or two ester linkages in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

Low rolling resistance tires are designed to reduce the energy loss as a tire rolls, decreasing the required rolling effort — and in the case of automotive applications, improving vehicle fuel efficiency as approximately 5–15% of the fuel consumed by a typical gas car may be used to overcome rolling resistance.

In physics and engineering, permeation is the penetration of a permeate through a solid. It is directly related to the concentration gradient of the permeate, a material's intrinsic permeability, and the materials' mass diffusivity. Permeation is modeled by equations such as Fick's laws of diffusion, and can be measured using tools such as a minipermeameter.

<span class="mw-page-title-main">SAE J2452</span>

SAE J2452 is a standard defined by the Society of Automotive Engineers to measure the rolling resistance of tires. Where the older standard, SAE J1269, produces measurements of rolling resistance under steady-state operating conditions, SAE J2452 produces measurements during a transient history of speed that is intended to mimic a vehicle coastdown event. During the SAE J2452 test, the tire is not in thermal equilibrium, but the coastdown event is rapid enough that the tire operates at a roughly iso-thermal condition.

There are a number of possible ways to measure thermal conductivity, each of them suitable for a limited range of materials, depending on the thermal properties and the medium temperature. Three classes of methods exist to measure the thermal conductivity of a sample: steady-state, time-domain, and frequency-domain methods.

<span class="mw-page-title-main">Temperature</span> Physical quantity of hot and cold

Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making up a substance.

The Buchner ring expansion is a two-step organic C-C bond forming reaction used to access 7-membered rings. The first step involves formation of a carbene from ethyl diazoacetate, which cyclopropanates an aromatic ring. The ring expansion occurs in the second step, with an electrocyclic reaction opening the cyclopropane ring to form the 7-membered ring.

<span class="mw-page-title-main">Outline of tires</span> Overview of and topical guide to tires

The following outline is provided as an overview of and topical guide to tires:

CuproBraze is a copper-alloy heat exchanger technology for high-temperature and pressure environments such as those in modern diesel engines. The technology, developed by the International Copper Association (ICA), is licensed for free to heat exchanger manufacturers around the world.

<span class="mw-page-title-main">Train wheel</span> Wheel designed for railway tracks

A train wheel or rail wheel is a type of wheel specially designed for use on railway tracks. The wheel acts as a rolling component, typically press fitted onto an axle and mounted directly on a railway carriage or locomotive, or indirectly on a bogie, also called a truck. The powered wheels under the locomotive are called driving wheels. Wheels are initially cast or forged and then heat-treated to have a specific hardness. New wheels are machined using a lathe to a standardized shape, called a profile, before being installed onto an axle. All wheel profiles are regularly checked to ensure proper interaction between the wheel and the rail. Incorrectly profiled wheels and worn wheels can increase rolling resistance, reduce energy efficiency and may even cause a derailment. The International Union of Railways has defined a standard wheel diameter of 920 mm (36 in), although smaller sizes are used in some rapid transit railway systems and on ro-ro carriages.

Joseph D. Walter is a retired American tire industry mechanical engineering researcher and former Bridgestone executive.

References

  1. "Rolling Resistance Measurement Procedure for Passenger Car, Light Truck, and Highway Truck and Bus Tires J1269_202012". sae.org. SAE. Retrieved 3 February 2024.
  2. Hall, D. E.; Moreland, J. C. (2001). "Fundamentals of Rolling Resistance". Rubber Chemistry and Technology. 74 (3): 525–539. doi:10.5254/1.3547650.
  3. Mars, W. V.; Luchini, J. R. (1999). "An Analytical Model for the Transient Rolling Resistance Behavior of Tires". Tire Science and Technology. 27 (3): 161–175. doi:10.2346/1.2135982.