SEVENDIP

Last updated

SEVENDIP, which stands for Search for Extraterrestrial Visible Emissions from Nearby Developed Intelligent Populations, was a project developed by the Berkeley SETI Research Center at the University of California, Berkeley that used visible wavelengths to search for extraterrestrial life's intelligent signals from outer space. [1]

Berkeley SETI Research Center

The Berkeley SETI Research Center (BSRC) conducts experiments searching for optical and electromagnetic transmissions from intelligent extraterrestrial civilizations. The center is based at the University of California, Berkeley.

University of California, Berkeley Public university in California, USA

The University of California, Berkeley is a public research university in Berkeley, California. It was founded in 1868 and serves as the flagship campus of the ten campuses of the University of California. Berkeley has since grown to instruct over 40,000 students in approximately 350 undergraduate and graduate degree programs covering numerous disciplines.

Extraterrestrial life Life occurring outside of Earth which did not originate on Earth

Extraterrestrial life refers to life occurring outside of Earth which did not originate on Earth. Such hypothetical life might range from simple prokaryotes to beings with civilizations far more advanced than humanity. The Drake equation speculates about the existence of intelligent life elsewhere in the universe. The science of extraterrestrial life in all its forms is known as astrobiology.

Between 1997 and 2007, SEVENDIP employed a 30-inch automated telescope located in Lafayette, California, to scan the sky for potential optical interstellar communications in the nanosecond time-scale laser pulses. [2] Another instrument was mounted on Berkeley's 0.8-meter automated telescope at Leuschner Observatory. [2] Their sensors have a rise time of 0.7 ns and are sensitive to 300 - 700 nm wavelengths.

Laser Device which emits light via optical amplification

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The term "laser" originated as an acronym for "light amplification by stimulated emission of radiation". The first laser was built in 1960 by Theodore H. Maiman at Hughes Research Laboratories, based on theoretical work by Charles Hard Townes and Arthur Leonard Schawlow.

Leuschner Observatory

Leuschner Observatory, originally called the Students' Observatory, is an observatory jointly operated by the University of California, Berkeley and San Francisco State University. The observatory was built in 1886 on the Berkeley campus. For many years, it was directed by Armin Otto Leuschner, for whom the observatory was renamed in 1951. In 1965, it was relocated to its present home in Lafayette, California, approximately 10 miles (16 km) east of the Berkeley campus. In 2012, the physics and astronomy department of San Francisco State University became a partner.

A nanosecond (ns) is an SI unit of time equal to one thousand-millionth of a second, that is, 1/1,000,000,000 of a second, or 10−9 seconds.

The target list included mostly nearby F, G, K and M stars, plus a few globular clusters and galaxies. [2] [3] The Leuschner pulse search examined several thousand stars, each for approximately one minute or more. [2]

F-type main-sequence star stellar classification

An F-type main-sequence star is a main-sequence, hydrogen-fusing compact star of spectral type F and luminosity class V. These stars have from 1.0 to 1.4 times the mass of the Sun and surface temperatures between 6,000 and 7,600 K.Tables VII and VIII. This temperature range gives the F-type stars a yellow-white hue. Because a main-sequence star is referred to as a dwarf star, this class of star may also be termed a yellow-white dwarf. Famous examples include Procyon A, Gamma Virginis A and B, and KIC 8462852.

G-type main-sequence star main-sequence star

A G-type main-sequence star, often called a yellow dwarf, or G dwarf star, is a main-sequence star of spectral type G. Such a star has about 0.84 to 1.15 solar masses and surface temperature of between 5,300 and 6,000 K., Tables VII, VIII. Like other main-sequence stars, a G-type main-sequence star is converting the element hydrogen to helium in its core by means of nuclear fusion. The Sun, the star to which the Earth is gravitationally bound in the Solar System and the object with the largest apparent magnitude, is an example of a G-type main-sequence star. Each second, the Sun fuses approximately 600 million tons of hydrogen to helium, converting about 4 million tons of matter to energy. Besides the Sun, other well-known examples of G-type main-sequence stars include Alpha Centauri A, Tau Ceti, and 51 Pegasi.

K-type main-sequence star stellar classification

A K-type main-sequence star, also referred to as a K dwarf, is a main-sequence (hydrogen-burning) star of spectral type K and luminosity class V. These stars are intermediate in size between red M-type main-sequence stars and yellow G-type main-sequence stars. They have masses between 0.5 and 0.8 times the mass of the Sun and surface temperatures between 3,900 and 5,200 K. These stars are of particular interest in the search for extraterrestrial life. Well-known examples include Alpha Centauri B and Epsilon Indi.

Related Research Articles

Search for extraterrestrial intelligence Effort to find civilizations not from Earth

The search for extraterrestrial intelligence (SETI) is a collective term for scientific searches for intelligent extraterrestrial life, for example, monitoring electromagnetic radiation for signs of transmissions from civilizations on other planets.

SETI@home is an Internet-based public volunteer computing project employing the BOINC software platform created by the Berkeley SETI Research Center and is hosted by the Space Sciences Laboratory, at the University of California, Berkeley. Its purpose is to analyze radio signals, searching for signs of extraterrestrial intelligence, and as such is one of many activities undertaken as part of the worldwide SETI effort.

Project Phoenix was a SETI project: in this case a search for extraterrestrial intelligence by analyzing patterns in radio signals. It was run by the independently funded SETI Institute of Mountain View, California, USA.

SETI Institute not-for-profit research organization

The SETI Institute is a not-for-profit research organization whose mission is to explore, understand, and explain the origin and nature of life in the universe, and to apply the knowledge gained to inspire and guide present and future generations. It aims for discovery and for sharing knowledge as scientific ambassadors to the public, the press, and the government. SETI stands for the "search for extraterrestrial intelligence". The Institute consists of three primary centers: The Carl Sagan Center, devoted to the study of life in the universe, the Center for Education, focused on astronomy, astrobiology and space science for students and educators, and the Center for Public Outreach, producing "Big Picture Science," the Institute's general science radio show and podcast, and "SETI Talks" weekly colloquium series.

Project Ozma 1960 SETI experiment

Project Ozma was a pioneering SETI experiment started in 1960 by Cornell University astronomer Frank Drake, at the National Radio Astronomy Observatory at Green Bank, West Virginia. The object of the experiment was to search for signs of life in distant planetary systems through interstellar radio waves. The program was named after Princess Ozma, ruler of the fictional land of Oz, inspired by L. Frank Baum's supposed communication with Oz by radio to learn of the events in the books taking place after The Emerald City of Oz. The search was publicized in articles in the popular media of the time, such as Time magazine.

Project Cyclops is a 1971 NASA project that investigated how SETI should be conducted. As a NASA product the report is in the public domain. The project team created a design for coordinating large numbers of radio telescopes to search for Earth-like radio signals at a distance of up to 1,000 light-years to find intelligent life. The proposed design was shelved due to costs. However, the report became the basis for much of the SETI work to follow.

Stuart Kingsley is considered a pioneer in the Optical Search For Extraterrestrial Intelligence, also known as Optical SETI (OSETI).

Automated Planet Finder automated telescope searching exoplanets currently under construction

The Automated Planet Finder Telescope (APF) a.k.a. Rocky Planet Finder, is a fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA. It is designed to search for extrasolar planets in the range of five to twenty times the mass of the Earth. The instrument will examine about 10 stars per night. Over the span of a decade, the telescope is expected to study 1,000 nearby stars for planets. Its estimated cost was $10 million. The total cost-to-completion of the APF project was $12.37 million. First light was originally scheduled for 2006, but delays in the construction of the major components of the telescope pushed this back to August 2013. It was commissioned in August 2013.

SERENDIP is a Search for Extra-Terrestrial Intelligence (SETI) program originated by the Berkeley SETI Research Center at the University of California, Berkeley.

H. Paul Shuch American astronomer

H. Paul Shuch is an American scientist and engineer who has coordinated radio amateurs to help in the search for extraterrestrial intelligence (SETI).

Dan Werthimer American astronomer

Dan Werthimer is co-founder and chief scientist of the SETI@home project and directs other UC Berkeley SETI searches at radio, infrared and visible wavelengths, including the Search for Extra-Terrestrial Radio Emissions from Nearby Developed Intelligent Populations (SERENDIP). He is also the principal investigator for the worldwide Collaboration for Astronomy Signal Processing and Electronics Research (CASPER).

Kepler-62e exoplanet

Kepler-62e is a super-Earth exoplanet discovered orbiting within the habitable zone of Kepler-62, the second outermost of five such planets discovered by NASA's Kepler spacecraft. Kepler-62e is located about 1,200 light-years (370 pc) from Earth in the constellation of Lyra. The exoplanet was found using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. Kepler-62e may be a terrestrial or ocean-covered planet; it lies in the inner part of its host star's habitable zone.

Kepler-438b extrasolar planet

Kepler-438b is a confirmed near-Earth-sized exoplanet. It is likely rocky. It orbits on the inner edge of the habitable zone of a red dwarf, Kepler-438, about 640 light-years from Earth in the constellation Lyra. It receives 1.4 times our solar flux. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the confirmation of the exoplanet on 6 January 2015.

Kepler-442b extrasolar planet

Kepler-442b is a confirmed near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the K-type main-sequence star Kepler-442, about 1,206 light-years, from Earth in the constellation Lyra. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the confirmation of the exoplanet on 6 January 2015.

Breakthrough Listen initiative to search for intelligent extraterrestrial life

Breakthrough Listen is a project to search for intelligent extraterrestrial communications in the Universe. With $100 million in funding and thousands of hours of dedicated telescope time on state-of-the-art facilities, it is the most comprehensive search for alien communications to date. The project began in January 2016, and is expected to continue for 10 years. It is a component of Yuri Milner's Breakthrough Initiatives program. The science program for Breakthrough Listen is based at Berkeley SETI Research Center, located in the Astronomy Department at the University of California, Berkeley.

HD 164595 b is a confirmed exoplanet orbiting around a Sun-like star HD 164595 every 40 days some 94.36 light-years away. It was detected with the radial velocity technique with the SOPHIE echelle spectrograph. The planet has a minimal mass equivalent of 16 Earths.

Kepler-1229b is a confirmed super-Earth exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf star Kepler-1229, located about 870 light years (267 parsecs from Earth in the constellation of Cygnus. It was discovered in 2016 by the Kepler space telescope. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

NIROSETI


The NIROSETI is an astronomical program to search for artificial signals in the optical (visible) and near infrared (NIR) wavebands of the electromagnetic spectrum. It is the first dedicated near-infrared SETI experiment. The instrument was created by a collaboration of scientists from the University of California, San Diego, Berkeley SETI Research Center at the University of California, Berkeley, University of Toronto, and the SETI Institute. It uses the Anna Nickel 1-m telescope at the Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA. The instrument was commissioned on 15 March 2015 and has been operated for more than 150 nights.

References

  1. "The Search for Extra Terrestrial Intelligence at Berkeley". University of California at Berkeley. Archived from the original on 25 December 2012. Retrieved 5 April 2012.
  2. 1 2 3 4 Status of the UC-Berkeley SETI Efforts. Eric J. Korpela, David P. Anderson , Robert Bankay, Jeff Cobb, Andrew Howard, Matt Lebofsky, Andrew P.V. Siemion, Joshua von Korff, Dan Werthimer. arXiv. 16 Aug 2011.
  3. Berkeley Radio and Optical SETI Programs: SETI@Home, SERENDIP, and SEVENDIP. Dan Werthimer, David Anderson, Stuart Bowyer, Jeff Cobb, Eric Korpela, Michael Lampton, Matt Lebofsky, Geoff Marcy, and Dick Treffers. Coseti.org, 2006.