STN display

Last updated
The original Game Boy used a STN screen Game-Boy-FL.jpg
The original Game Boy used a STN screen

A STN (super-twisted nematic) display is a type of liquid-crystal display (LCD). An LCD is a flat-panel display that uses liquid crystals to change its properties when exposed to an electric field, which can be used to create images. This change is called the twisted nematic (TN) field effect. Earlier TN displays twisted the liquid crystal molecules at a 90-degree angle. STN displays improved on that by twisting the liquid crystal molecules at a much greater angle, typically between 180 and 270 degrees. This allows for a sharper image and passive matrix addressing, a simpler way to control the pixels in an LCD.

Contents

While STN displays were once common in various electronic devices, they have been largely replaced by TFT (thin-film transistor) displays.

Development

Early STN LCD built by Brown Boveri in 1984 BBC STN Matrixanzeige 540x270.jpg
Early STN LCD built by Brown Boveri in 1984

In 1982, C. M. Waters and E. P. Raynes patented STN displays, [1] and by 1984 researchers at Brown Boveri (later ABB) built the first prototype STN matrix display, with 540 × 270 pixels. [2] A key challenge was finding a way to address more pixels efficiently. Standard TN displays weren't ideal for this because of their voltage characteristics. STN displays, with their 180-270 degree twist, offered a solution. This twist allows for a clearer distinction between on and off states, making them suitable for passive-matrix addressing with more pixels. [3] [4]

The main advantage of STN LCDs is their lower power consumption and affordability. They can also be made purely reflective for sunlight readability. In the late 1980s, they were used in portable computers and handheld devices like the Nintendo Game Boy. While still found in some simple digital products like calculators, STN displays have largely been replaced by TFT LCDs, which offer superior image quality and faster response times.

Variants

CSTN in a Nokia 3510i phone Nokiadisplay.JPG
CSTN in a Nokia 3510i phone

CSTN (color super-twist nematic) is a color variant of STN displays, developed by Sharp. It uses red, green, and blue filters to create color images. Early CSTN displays had limitations like slow response times and ghosting. However, advancements have improved response times to 100ms (still longer than the 8ms for TFT), widened viewing angles to 140 degrees, and enhanced color quality, making them a more competitive option at about half the cost of TFT displays. A newer passive-matrix technology, high-performance addressing (HPA), offers even better performance than CSTN.

Other STN display variations were introduced, attempting to improve image quality and response times. They include:

Related Research Articles

<span class="mw-page-title-main">Liquid-crystal display</span> Display that uses the light-modulating properties of liquid crystals

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directly but instead use a backlight or reflector to produce images in color or monochrome.

An active-matrix liquid-crystal display (AMLCD) is a type of flat-panel display used in high-resolution TVs, computer monitors, notebook computers, tablet computers and smartphones with an LCD screen, due to low weight, very good image quality, wide color gamut and fast response time.

A thin-film transistor (TFT) is a special type of field-effect transistor (FET) where the transistor is made by thin film deposition. TFTs are grown on a supporting substrate, such as glass. This differs from the conventional bulk metal oxide field effect transistor (MOSFET), where the semiconductor material typically is the substrate, such as a silicon wafer. The traditional application of TFTs is in TFT liquid-crystal displays.

<span class="mw-page-title-main">Flat-panel display</span> Electronic display technology

A flat-panel display (FPD) is an electronic display used to display visual content such as text or images. It is present in consumer, medical, transportation, and industrial equipment.

<span class="mw-page-title-main">LCD projector</span> Type of video projector

An LCD projector is a type of video projector for displaying video, images or computer data on a screen or other flat surface. It is a modern equivalent of the slide projector or overhead projector. To display images, LCD projectors typically send light from a metal-halide lamp through a prism or series of dichroic filters that separates light to three polysilicon panels – one each for the red, green and blue components of the video signal. As polarized light passes through the panels, individual pixels can be opened to allow light to pass or closed to block the light. The combination of open and closed pixels can produce a wide range of colors and shades in the projected image.

Active matrix is a type of addressing scheme used in flat panel displays. In this method of switching individual elements (pixels), each pixel is attached to a transistor and capacitor actively maintaining the pixel state while other pixels are being addressed, in contrast with the older passive matrix technology in which each pixel must maintain its state passively, without being driven by circuitry.

Passive matrix addressing is an addressing scheme used in early LCDs. This is a matrix addressing scheme meaning that only m + n control signals are required to address an m × n display. A pixel in a passive matrix must maintain its state without active driving circuitry until it can be refreshed again.

<span class="mw-page-title-main">LCD television</span> Television set with liquid-crystal display

A liquid-crystal-display television is a television set that uses a liquid-crystal display to produce images. It is by far the most widely produced and sold type of television display. LCD TVs are thin and light, but have some disadvantages compared to other display types such as high power consumption, poorer contrast ratio, and inferior color gamut.

DSTN, also known as dual-scan super twisted nematic or simply dual-scan, is an LCD technology in which a screen is divided in half, which are simultaneously refreshed giving faster refresh rate than traditional passive matrix screens. It is an improved form of supertwist nematic display that offers low power consumption but inferior sharpness and brightness compared to TFT screens.

A thin-film-transistor liquid-crystal display is a type of liquid-crystal display that uses thin-film-transistor technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

<span class="mw-page-title-main">Twisted nematic field effect</span> Type of thin-film-transistor liquid-crystal display technology

The twisted nematic effect (TN-effect) was a main technology breakthrough that made LCDs practical. Unlike earlier displays, TN-cells did not require a current to flow for operation and used low operating voltages suitable for use with batteries. The introduction of TN-effect displays led to their rapid expansion in the display field, quickly pushing out other common technologies like monolithic LEDs and CRTs for most electronics. By the 1990s, TN-effect LCDs were largely universal in portable electronics, although since then, many applications of LCDs adopted alternatives to the TN-effect such as in-plane switching (IPS) or vertical alignment (VA).

<span class="mw-page-title-main">Martin Schadt</span> Swiss physicist and inventor (born 1938)

Martin Schadt is a Swiss physicist and inventor.

<span class="mw-page-title-main">Large-screen television technology</span> Technology rapidly developed in the late 1990s and 2000s

Large-screen television technology developed rapidly in the late 1990s and 2000s. Prior to the development of thin-screen technologies, rear-projection television was standard for larger displays, and jumbotron, a non-projection video display technology, was used at stadiums and concerts. Various thin-screen technologies are being developed, but only liquid crystal display (LCD), plasma display (PDP) and Digital Light Processing (DLP) have been publicly released. Recent technologies like organic light-emitting diode (OLED) as well as not-yet-released technologies like surface-conduction electron-emitter display (SED) or field emission display (FED) are in development to supercede earlier flat-screen technologies in picture quality.

<span class="mw-page-title-main">History of laptops</span>

The history of laptops describes the efforts, begun in the 1970s, to build small, portable Personal Computers that combine the components, inputs, outputs and capabilities of a Desktop Computer in a small chassis.

A blue phase mode LCD is a liquid crystal display (LCD) technology that uses highly twisted cholesteric phases in a blue phase. It was first proposed in 2007 to obtain a better display of moving images with, for example, frame rates of 100–120 Hz to improve the temporal response of LCDs. This operational mode for LCDs also does not require anisotropic alignment layers and thus theoretically simplifies the LCD manufacturing process.

<span class="mw-page-title-main">AMOLED</span> Display technology for use in mobile devices and televisions

AMOLED is a type of OLED display device technology. OLED describes a specific type of thin-film-display technology in which organic compounds form the electroluminescent material, and active matrix refers to the technology behind the addressing of pixels.

Electrically operated display devices have developed from electromechanical systems for display of text, up to all-electronic devices capable of full-motion 3D color graphic displays. Electromagnetic devices, using a solenoid coil to control a visible flag or flap, were the earliest type, and were used for text displays such as stock market prices and arrival/departure display times. The cathode ray tube was the workhorse of text and video display technology for several decades until being displaced by plasma, liquid crystal (LCD), and solid-state devices such as thin-film transistors (TFTs), LEDs and OLEDs. With the advent of metal–oxide–semiconductor field-effect transistors (MOSFETs), integrated circuit (IC) chips, microprocessors, and microelectronic devices, many more individual picture elements ("pixels") could be incorporated into one display device, allowing graphic displays and video.

LCD crosstalk is a visual defect in an LCD screen which occurs because of interference between adjacent pixels.

IPS is a screen technology for liquid-crystal displays (LCDs). In IPS, a layer of liquid crystals is sandwiched between two glass surfaces. The liquid crystal molecules are aligned parallel to those surfaces in predetermined directions (in-plane). The molecules are reoriented by an applied electric field, whilst remaining essentially parallel to the surfaces to produce an image. It was designed to solve the strong viewing angle dependence and low-quality color reproduction of the twisted nematic field effect (TN) matrix LCDs prevalent in the late 1980s.

<span class="mw-page-title-main">Peter J. Wild</span> Swiss electronics engineer and inventor (born 1939)

Peter J. Wild is a Swiss electronics engineer and a pioneer of liquid-crystal display (LCD) technology.

References

  1. Waters, Colin Martin; Raynes, Edward Peter (1982). "Liquid Crystal Devices".
  2. European Patent No. EP 0131216: Amstutz H., Heimgartner D., Kaufmann M.,Scheffer T.J., "Flüssigkristallanzeige," October 28, 1987.
  3. Scheffer, T. J.; Nehring, J. (1984-11-15). "A new, highly multiplexable liquid crystal display". Applied Physics Letters. 45 (10). AIP Publishing: 1021–1023. Bibcode:1984ApPhL..45.1021S. doi:10.1063/1.95048. ISSN   0003-6951.
  4. Kelly, Stephen M. (2000). Flat Panel Displays: Advanced Organic Materials . Royal Society of Chemistry. pp.  115–117. ISBN   0-85404-567-8. Super-twisted nematic display.