Sachiko Tsuruta

Last updated
Sachiko Tsuruta
Alma materColumbia University
Scientific career
Thesis Neutron star models  (1964)

Sachiko Tsuruta is a Japanese-born American astrophysicist.

Contents

Education

Tsuruta received a bachelor's degree from the University of Washington in 1956. She subsequently went on to Columbia University where she earned a master's degree in 1959 and a doctorate in 1964. [1] While at Columbia she worked with Hong-Yee Chiu and Alastair G. W. Cameron at the NASA Goddard Institute for Space Studies.

Career

Simulated view of a neutron star with accretion disk. The disk appears distorted near the star due to extreme gravitational lensing. Neutron Star simulation.png
Simulated view of a neutron star with accretion disk. The disk appears distorted near the star due to extreme gravitational lensing.

Tsuruta predicted the existence of neutron stars as a doctoral student before their discovery in the form of pulsars in 1967.[ dubious ] [2]

After obtaining her doctorate, Tsuruta worked at the Smithsonian Astrophysical Observatory and then beginning in the early 1970s at NASA Goddard Space Flight Center She joined the faculty of the physics department at Montana State University [3] as a visiting professor in 1977 and as a tenure track professor in 1990. [1] [4] In 2016, she became a professor emerita and research professor in physics at MSU. [4] Tsuruta has also been a visiting professor at other institutions, including the Max Planck Institute for Astrophysics and several universities in Japan. [5]

Awards

In 2015, Tsuruta received the Marcel Grossmann Award "for pioneering the physics of hot neutron stars and their cooling." [2] [6] One of the other award recipients that year was Ken'ichi Nomoto, [6] with whom she had collaborated on many papers and conference presentations beginning in 1980.

Selected works

Related Research Articles

<span class="mw-page-title-main">Neutron star</span> Collapsed core of a massive star

A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses (M), possibly more if the star was especially metal-rich. Except for black holes, neutron stars are the smallest and densest known class of stellar objects. Neutron stars have a radius on the order of 10 kilometers (6 mi) and a mass of about 1.4 M. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.

<span class="mw-page-title-main">Stellar evolution</span> Changes to stars over their lifespans

Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.

<span class="mw-page-title-main">X-ray binary</span> Class of binary stars

X-ray binaries are a class of binary stars that are luminous in X-rays. The X-rays are produced by matter falling from one component, called the donor, to the other component, called the accretor, which is either a neutron star or black hole. The infalling matter releases gravitational potential energy, up to 30 percent of its rest mass, as X-rays. The lifetime and the mass-transfer rate in an X-ray binary depends on the evolutionary status of the donor star, the mass ratio between the stellar components, and their orbital separation.

In astronomy, the term compact star refers collectively to white dwarfs, neutron stars, and black holes. It would grow to include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a high mass relative to their radius, giving them a very high density, compared to ordinary atomic matter.

<span class="mw-page-title-main">Pulsar</span> Highly magnetized, rapidly rotating neutron star

A pulsar is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Earth, and is responsible for the pulsed appearance of emission. Neutron stars are very dense and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are one of the candidates for the source of ultra-high-energy cosmic rays.

<span class="mw-page-title-main">Astrophysical jet</span> Beam of ionized matter flowing along the axis of a rotating astronomical object

An astrophysical jet is an astronomical phenomenon where outflows of ionised matter are emitted as extended beams along the axis of rotation. When this greatly accelerated matter in the beam approaches the speed of light, astrophysical jets become relativistic jets as they show effects from special relativity.

<span class="mw-page-title-main">Millisecond pulsar</span> Pulsar with a rotational period less than about 10 milliseconds

A millisecond pulsar (MSP) is a pulsar with a rotational period less than about 10 milliseconds. Millisecond pulsars have been detected in radio, X-ray, and gamma ray portions of the electromagnetic spectrum. The leading theory for the origin of millisecond pulsars is that they are old, rapidly rotating neutron stars that have been spun up or "recycled" through accretion of matter from a companion star in a close binary system. For this reason, millisecond pulsars are sometimes called recycled pulsars.

<span class="mw-page-title-main">PSR J0737−3039</span> Double pulsar in the constellation Puppis

PSR J0737−3039 is the first known double pulsar. It consists of two neutron stars emitting electromagnetic waves in the radio wavelength in a relativistic binary system. The two pulsars are known as PSR J0737−3039A and PSR J0737−3039B. It was discovered in 2003 at Australia's Parkes Observatory by an international team led by the Italian radio astronomer Marta Burgay during a high-latitude pulsar survey.

The Tolman–Oppenheimer–Volkoff limit is an upper bound to the mass of cold, non-rotating neutron stars, analogous to the Chandrasekhar limit for white dwarf stars. If the mass of a neutron star reaches the limit it will collapse to a denser form, most likely a black hole.

Rotating radio transients (RRATs) are sources of short, moderately bright, radio pulses, which were first discovered in 2006. RRATs are thought to be pulsars, i.e. rotating magnetised neutron stars which emit more sporadically and/or with higher pulse-to-pulse variability than the bulk of the known pulsars. The working definition of what a RRAT is, is a pulsar which is more easily discoverable in a search for bright single pulses, as opposed to in Fourier domain searches so that 'RRAT' is little more than a label and does not represent a distinct class of objects from pulsars. As of March 2015 over 100 have been reported.

<span class="mw-page-title-main">Radio-quiet neutron star</span> Neutron star that does not emit radio waves

A radio-quiet neutron star is a neutron star that does not seem to emit radio emissions, but is still visible to Earth through electromagnetic radiation at other parts of the spectrum, particularly X-rays and gamma rays.

<span class="mw-page-title-main">Vela X-1</span> X-ray emission source in the constellation Vela

Vela X-1 is a pulsing, eclipsing high-mass X-ray binary (HMXB) system, associated with the Uhuru source 4U 0900-40 and the supergiant star HD 77581. The X-ray emission of the neutron star is caused by the capture and accretion of matter from the stellar wind of the supergiant companion. Vela X-1 is the prototypical detached HMXB.

<span class="mw-page-title-main">Type II supernova</span> Explosion of a star 8 to 45 times the mass of the Sun

A Type II supernova or SNII results from the rapid collapse and violent explosion of a massive star. A star must have at least eight times, but no more than 40 to 50 times, the mass of the Sun (M) to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies; those are generally composed of older, low-mass stars, with few of the young, very massive stars necessary to cause a supernova.

The Magnificent Seven is the informal name of a group of isolated young cooling neutron stars at a distance of 120 to 500 parsecs from Earth. These objects are also known under the names XDINS or simply XINS.

RRAT J1819-1458 is a Milky Way neutron star and the best studied of the class of rotating radio transients (RRATs) first discovered in 2006.

<span class="mw-page-title-main">IGR J11014−6103</span> Nebula in the constellation Carina

IGR J11014−6103, also called the Lighthouse Nebula, is a pulsar wind nebula trailing the neutron star which has the longest relativistic jet observed in the Milky Way.

<span class="mw-page-title-main">Hypernova</span> Supernova that ejects a large mass at unusually high velocity

A hypernova is a very energetic supernova which is believed to result from an extreme core-collapse scenario. In this case, a massive star collapses to form a rotating black hole emitting twin astrophysical jets and surrounded by an accretion disk. It is a type of stellar explosion that ejects material with an unusually high kinetic energy, an order of magnitude higher than most supernovae, with a luminosity at least 10 times greater. They usually appear similar to a type Ic supernova, but with unusually broad spectral lines indicating an extremely high expansion velocity. Hypernovae are one of the mechanisms for producing long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration. They have also been referred to as superluminous supernovae, though that classification also includes other types of extremely luminous stellar explosions that have different origins.

<span class="mw-page-title-main">Richard V. E. Lovelace</span> American astrophysicist and plasma physicist

Richard Van Evera Lovelace is an American astrophysicist and plasma physicist. He is best known for the discovery of the period of the pulsar in the Crab Nebula, which helped to prove that pulsars are rotating neutron stars, for developing a magnetic model of astrophysical jets from galaxies, and for developing a model of Rossby waves in accretion disks. He organized a US-Russia collaboration in plasma astrophysics, which focused on modeling of plasma accretion and outflows from magnetized rotating stars.

Ken'ichi Nomoto is a Japanese astrophysicist and astronomer, known for his research on stellar evolution, supernovae, and the origin of heavy elements.

References

  1. 1 2 "MSU astrophysicist Sachiko Tsuruta wins international prize for pioneering work on neutron stars". Bozeman Magazine (June 2015). 4 June 2015. Retrieved 25 January 2023.
  2. 1 2 Boswell, Evelyn (3 June 2015). "MSU scientist wins international prize for pioneering work on neutron stars". MSU News Service. Retrieved 25 January 2023.
  3. "In Brief". Physics Today. 38 (1): 110. January 1985. Bibcode:1985PhT....38a.110.. doi:10.1063/1.2813723 . Retrieved 26 January 2023.
  4. 1 2 "Sachiko Tsuruta, Professor emerita and research professor in physics". Montana State University. Retrieved 25 January 2023.
  5. "Sachiko Tsuruta Biography". 3rd International Conference on Astronomy and Space Science. 2 May 2019. Retrieved 25 January 2023.
  6. 1 2 "MG XIV: Marcel Grossman Awards: Rome 2015" (PDF). International Center for Relativistic Astrophysics. Retrieved 25 January 2023.