Sahlqvist formula

Last updated

In modal logic, Sahlqvist formulas are a certain kind of modal formula with remarkable properties. The Sahlqvist correspondence theorem states that every Sahlqvist formula is canonical, and corresponds to a class of Kripke frames definable by a first-order formula.

Contents

Sahlqvist's definition characterizes a decidable set of modal formulas with first-order correspondents. Since it is undecidable, by Chagrova's theorem, whether an arbitrary modal formula has a first-order correspondent, there are formulas with first-order frame conditions that are not Sahlqvist [Chagrova 1991] (see the examples below). Hence Sahlqvist formulas define only a (decidable) subset of modal formulas with first-order correspondents.

Definition

Sahlqvist formulas are built up from implications, where the consequent is positive and the antecedent is of a restricted form.

Examples of Sahlqvist formulas

Its first-order corresponding formula is , and it defines all reflexive frames
Its first-order corresponding formula is , and it defines all symmetric frames
or
Its first-order corresponding formula is , and it defines all transitive frames
or
Its first-order corresponding formula is , and it defines all dense frames
Its first-order corresponding formula is , and it defines all right-unbounded frames (also called serial)
Its first-order corresponding formula is , and it is the Church–Rosser property.

Examples of non-Sahlqvist formulas

This is the McKinsey formula; it does not have a first-order frame condition.
The Löb axiom is not Sahlqvist; again, it does not have a first-order frame condition.
The conjunction of the McKinsey formula and the (4) axiom has a first-order frame condition (the conjunction of the transitivity property with the property ) but is not equivalent to any Sahlqvist formula.

Kracht's theorem

When a Sahlqvist formula is used as an axiom in a normal modal logic, the logic is guaranteed to be complete with respect to the basic elementary class of frames the axiom defines. This result comes from the Sahlqvist completeness theorem [Modal Logic, Blackburn et al., Theorem 4.42]. But there is also a converse theorem, namely a theorem that states which first-order conditions are the correspondents of Sahlqvist formulas. Kracht's theorem states that any Sahlqvist formula locally corresponds to a Kracht formula; and conversely, every Kracht formula is a local first-order correspondent of some Sahlqvist formula which can be effectively obtained from the Kracht formula [Modal Logic, Blackburn et al., Theorem 3.59].

Related Research Articles

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

Gödel's ontological proof is a formal argument by the mathematician Kurt Gödel (1906–1978) for the existence of God. The argument is in a line of development that goes back to Anselm of Canterbury (1033–1109). St. Anselm's ontological argument, in its most succinct form, is as follows: "God, by definition, is that for which no greater can be conceived. God exists in the understanding. If God exists in the understanding, we could imagine Him to be greater by existing in reality. Therefore, God must exist." A more elaborate version was given by Gottfried Leibniz (1646–1716); this is the version that Gödel studied and attempted to clarify with his ontological argument.

<span class="mw-page-title-main">Original proof of Gödel's completeness theorem</span>

The proof of Gödel's completeness theorem given by Kurt Gödel in his doctoral dissertation of 1929 is not easy to read today; it uses concepts and formalisms that are no longer used and terminology that is often obscure. The version given below attempts to represent all the steps in the proof and all the important ideas faithfully, while restating the proof in the modern language of mathematical logic. This outline should not be considered a rigorous proof of the theorem.

<span class="mw-page-title-main">Saul Kripke</span> American philosopher and logician (1940–2022)

Saul Aaron Kripke was an American analytic philosopher and logician. He was Distinguished Professor of Philosophy at the Graduate Center of the City University of New York and emeritus professor at Princeton University. Kripke is considered one of the most important philosophers of the latter half of the 20th century. Since the 1960s, he has been a central figure in a number of fields related to mathematical and modal logic, philosophy of language and mathematics, metaphysics, epistemology, and recursion theory.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

Relevance logic, also called relevant logic, is a kind of non-classical logic requiring the antecedent and consequent of implications to be relevantly related. They may be viewed as a family of substructural or modal logics. It is generally, but not universally, called relevant logic by British and, especially, Australian logicians, and relevance logic by American logicians.

In quantified modal logic, the Barcan formula and the converse Barcan formula (i) syntactically state principles of interchange between quantifiers and modalities; (ii) semantically state a relation between domains of possible worlds. The formulas were introduced as axioms by Ruth Barcan Marcus, in the first extensions of modal propositional logic to include quantification.

Modal logic is a kind of logic used to represent statements about necessity and possibility. It plays a major role in philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation. For instance, in epistemic modal logic, the formula can be used to represent the statement that is known. In deontic modal logic, that same formula can represent that is a moral obligation.

Interpretability logics comprise a family of modal logics that extend provability logic to describe interpretability or various related metamathematical properties and relations such as weak interpretability, Π1-conservativity, cointerpretability, tolerance, cotolerance, and arithmetic complexities.

In mathematical logic, Löb's theorem states that in Peano arithmetic (PA) (or any formal system including PA), for any formula P, if it is provable in PA that "if P is provable in PA then P is true", then P is provable in PA. If Prov(P) means that the formula P is provable, we may express this more formally as

Kripke semantics is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke.

In logic, a rule of inference is admissible in a formal system if the set of theorems of the system does not change when that rule is added to the existing rules of the system. In other words, every formula that can be derived using that rule is already derivable without that rule, so, in a sense, it is redundant. The concept of an admissible rule was introduced by Paul Lorenzen (1955).

Deontic logic is the field of philosophical logic that is concerned with obligation, permission, and related concepts. Alternatively, a deontic logic is a formal system that attempts to capture the essential logical features of these concepts. It can be used to formalize imperative logic, or directive modality in natural languages. Typically, a deontic logic uses OA to mean it is obligatory that A, and PA to mean it is permitted that A, which is defined as .

In logic, a modal companion of a superintuitionistic (intermediate) logic L is a normal modal logic that interprets L by a certain canonical translation, described below. Modal companions share various properties of the original intermediate logic, which enables to study intermediate logics using tools developed for modal logic.

In logic, general frames are Kripke frames with an additional structure, which are used to model modal and intermediate logics. The general frame semantics combines the main virtues of Kripke semantics and algebraic semantics: it shares the transparent geometrical insight of the former, and robust completeness of the latter.

In mathematics and philosophy, Łukasiewicz logic is a non-classical, many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued modal logic; it was later generalized to n-valued as well as infinitely-many-valued (0-valued) variants, both propositional and first order. The ℵ0-valued version was published in 1930 by Łukasiewicz and Alfred Tarski; consequently it is sometimes called the Łukasiewicz–Tarski logic. It belongs to the classes of t-norm fuzzy logics and substructural logics.

In logic and philosophy, S5 is one of five systems of modal logic proposed by Clarence Irving Lewis and Cooper Harold Langford in their 1932 book Symbolic Logic. It is a normal modal logic, and one of the oldest systems of modal logic of any kind. It is formed with propositional calculus formulas and tautologies, and inference apparatus with substitution and modus ponens, but extending the syntax with the modal operator necessarily and its dual possibly.

In modal logic, standard translation is a logic translation that transforms formulas of modal logic into formulas of first-order logic which capture the meaning of the modal formulas. Standard translation is defined inductively on the structure of the formula. In short, atomic formulas are mapped onto unary predicates and the objects in the first-order language are the accessible worlds. The logical connectives from propositional logic remain untouched and the modal operators are transformed into first-order formulas according to their semantics.

In quantified modal logic, the Buridan formula and the converse Buridan formula (i) syntactically state principles of interchange between quantifiers and modalities; (ii) semantically state a relation between domains of possible worlds. The formulas are named in honor of the medieval philosopher Jean Buridan by analogy with the Barcan formula and the converse Barcan formula introduced as axioms by Ruth Barcan Marcus.

A non-normal modal logic is a variant of modal logic that deviates from the basic principles of normal modal logics.

References