Sample exclusion dimension

Last updated

In computational learning theory, sample exclusion dimensions arise in the study of exact concept learning with queries. [1]

In algorithmic learning theory, a concept over a domain X is a Boolean function over X. Here we only consider finite domains. A partial approximationS of a concept c is a Boolean function over such that c is an extension to S.

Let C be a class of concepts and c be a concept (not necessarily in C). Then a specifying set for c w.r.t. C, denoted by S is a partial approximation S of c such that C contains at most one extension to S. If we have observed a specifying set for some concept w.r.t. C, then we have enough information to verify a concept in C with at most one more mind change.

The exclusion dimension, denoted by XD(C), of a concept class is the maximum of the size of the minimum specifying set of c' with respect to C, where c' is a concept not in C.

Related Research Articles

In mathematics, a binary relation associates elements of one set, called the domain, with elements of another set, called the codomain. A binary relation over sets X and Y is a new set of ordered pairs (x, y) consisting of elements x in X and y in Y. It is a generalization of the more widely understood idea of a mathematical function, but with fewer restrictions. It encodes the common concept of relation: an element x is related to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation. A binary relation is the most studied special case n = 2 of an n-ary relation over sets X1, ..., Xn, which is a subset of the Cartesian product

In mathematics, a finitary relation over sets X1, ..., Xn is a subset of the Cartesian product X1 × ⋯ × Xn; that is, it is a set of n-tuples (x1, ..., xn) consisting of elements xi in Xi. Typically, the relation describes a possible connection between the elements of an n-tuple. For example, the relation "x is divisible by y and z" consists of the set of 3-tuples such that when substituted to x, y and z, respectively, make the sentence true.

In mathematics, a partial functionf from a set X to a set Y is a function from a subset S of X to Y. The subset S, that is, the domain of f viewed as a function, is called the domain of definition of f. If S equals X, that is, if f is defined on every element in X, then f is said to be total.

Monotonic function Order-preserving mathematical function

In mathematics, a monotonic function is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order theory.

In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced A equals B. The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct.

Function (mathematics) Association of a single output to each input

In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function.

In computability theory, a set S of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if:

Probably approximately correct learning Framework for mathematical analysis of machine learning

In computational learning theory, probably approximately correct (PAC) learning is a framework for mathematical analysis of machine learning. It was proposed in 1984 by Leslie Valiant.

This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles:

Boolean function Function returning one of only two values

In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set. Alternative names are switching function, used especially in older computer science literature, and truth function, used in logic. Boolean functions are the subject of Boolean algebra and switching theory.

In mathematics, a Markov decision process (MDP) is a discrete-time stochastic control process. It provides a mathematical framework for modeling decision making in situations where outcomes are partly random and partly under the control of a decision maker. MDPs are useful for studying optimization problems solved via dynamic programming. MDPs were known at least as early as the 1950s; a core body of research on Markov decision processes resulted from Ronald Howard's 1960 book, Dynamic Programming and Markov Processes. They are used in many disciplines, including robotics, automatic control, economics and manufacturing. The name of MDPs comes from the Russian mathematician Andrey Markov as they are an extension of Markov chains.

In computability theory, a Turing reduction from a decision problem to a decision problem is an oracle machine which decides problem given an oracle for . It can be understood as an algorithm that could be used to solve if it had available to it a subroutine for solving B. The concept can be analogously applied to function problems.

MAX-3SAT is a problem in the computational complexity subfield of computer science. It generalises the Boolean satisfiability problem (SAT) which is a decision problem considered in complexity theory. It is defined as:

In computational learning theory in mathematics, a concept over a domain X is a total Boolean function over X. A concept class is a class of concepts. Concept classes are a subject of computational learning theory.

In computational complexity theory, the maximum satisfiability problem (MAX-SAT) is the problem of determining the maximum number of clauses, of a given Boolean formula in conjunctive normal form, that can be made true by an assignment of truth values to the variables of the formula. It is a generalization of the Boolean satisfiability problem, which asks whether there exists a truth assignment that makes all clauses true.

In computational complexity the decision tree model is the model of computation in which an algorithm is considered to be basically a decision tree, i.e., a sequence of queries or tests that are done adaptively, so the outcome of the previous tests can influence the test is performed next.

In computer science, an action language is a language for specifying state transition systems, and is commonly used to create formal models of the effects of actions on the world. Action languages are commonly used in the artificial intelligence and robotics domains, where they describe how actions affect the states of systems over time, and may be used for automated planning.

In mathematics, a submodular set function is a set function whose value, informally, has the property that the difference in the incremental value of the function that a single element makes when added to an input set decreases as the size of the input set increases. Submodular functions have a natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory and electrical networks. Recently, submodular functions have also found immense utility in several real world problems in machine learning and artificial intelligence, including automatic summarization, multi-document summarization, feature selection, active learning, sensor placement, image collection summarization and many other domains.

In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which the values of the variables are the truth values true and false, usually denoted 1 and 0, respectively. Instead of elementary algebra, where the values of the variables are numbers and the prime operations are addition and multiplication, the main operations of Boolean algebra are the conjunction (and) denoted as ∧, the disjunction (or) denoted as ∨, and the negation (not) denoted as ¬. It is thus a formalism for describing logical operations, in the same way that elementary algebra describes numerical operations.

In computer science, an enumeration algorithm is an algorithm that enumerates the answers to a computational problem. Formally, such an algorithm applies to problems that take an input and produce a list of solutions, similarly to function problems. For each input, the enumeration algorithm must produce the list of all solutions, without duplicates, and then halt. The performance of an enumeration algorithm is measured in terms of the time required to produce the solutions, either in terms of the total time required to produce all solutions, or in terms of the maximal delay between two consecutive solutions and in terms of a preprocessing time, counted as the time before outputting the first solution. This complexity can be expressed in terms of the size of the input, the size of each individual output, or the total size of the set of all outputs, similarly to what is done with output-sensitive algorithms.

References

  1. D. Angluin (2001). "Queries Revisited". In N. Abe; R. Khardon; T. Zeugmann (eds.). Algorithmic Learning Theory: 12th International Conference, ALT 2001, Washington, DC, USA, November 2001, Proceedings . Springer. pp.  26–28. ISBN   3-540-42875-5.