Satish B. Rao

Last updated

Satish B. Rao
Alma mater Massachusetts Institute of Technology PhD., 1989
Scientific career
Fields
Institutions University of California, Berkeley
Doctoral advisor Frank Thomson Leighton

Satish B. Rao is an American computer scientist who is a professor of computer science at the University of California, Berkeley. [1] [2]

Contents

Biography

Satish Rao received his PhD from the Massachusetts Institute of Technology in 1989 and joined the faculty at the University of California, Berkeley in 1999. [3]

Research and awards

Rao's research focuses on computational biology, graph partitioning, and single- and multi-commodity flows (maximum flow problem). [4]

Rao is an ACM Fellow (2013) [5] and won the Fulkerson Prize with Sanjeev Arora and Umesh Vazirani in 2012 for their work on improving the approximation ratio for graph separators and related problems from to . [6] [7] Rao teaches discrete mathematics and probability theory at the University of California, Berkeley. [1]

Publications

Satish Rao has published over 100 publications and is cited frequently. [8]

Selected publications

Related Research Articles

<span class="mw-page-title-main">Travelling salesman problem</span> NP-hard problem in combinatorial optimization

The travelling salesman problem, also known as the travelling salesperson problem (TSP), asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research.

In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there are also many approximation algorithms that provide an additive guarantee on the quality of the returned solution. A notable example of an approximation algorithm that provides both is the classic approximation algorithm of Lenstra, Shmoys and Tardos for scheduling on unrelated parallel machines.

In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem.

The Fulkerson Prize for outstanding papers in the area of discrete mathematics is sponsored jointly by the Mathematical Optimization Society (MOS) and the American Mathematical Society (AMS). Up to three awards of $1,500 each are presented at each (triennial) International Symposium of the MOS. Originally, the prizes were paid out of a memorial fund administered by the AMS that was established by friends of the late Delbert Ray Fulkerson to encourage mathematical excellence in the fields of research exemplified by his work. The prizes are now funded by an endowment administered by MPS.

In graph theory, a cut is a partition of the vertices of a graph into two disjoint subsets. Any cut determines a cut-set, the set of edges that have one endpoint in each subset of the partition. These edges are said to cross the cut. In a connected graph, each cut-set determines a unique cut, and in some cases cuts are identified with their cut-sets rather than with their vertex partitions.

Scott J. Shenker is an American computer scientist, and professor of computer science at the University of California, Berkeley. He is also the leader of the Extensible Internet Group at the International Computer Science Institute in Berkeley, California.

<span class="mw-page-title-main">Vijay Vazirani</span> Indian American professor of computer science

Vijay Virkumar Vazirani is an Indian American distinguished professor of computer science in the Donald Bren School of Information and Computer Sciences at the University of California, Irvine.

The Christofides algorithm or Christofides–Serdyukov algorithm is an algorithm for finding approximate solutions to the travelling salesman problem, on instances where the distances form a metric space . It is an approximation algorithm that guarantees that its solutions will be within a factor of 3/2 of the optimal solution length, and is named after Nicos Christofides and Anatoliy I. Serdyukov ; the latter discovered it independently in 1976.

Maximum cardinality matching is a fundamental problem in graph theory. We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this problem is equivalent to the task of finding a matching that covers as many vertices as possible.

Umesh Virkumar Vazirani is an Indian–American academic who is the Roger A. Strauch Professor of Electrical Engineering and Computer Science at the University of California, Berkeley, and the director of the Berkeley Quantum Computation Center. His research interests lie primarily in quantum computing. He is also a co-author of a textbook on algorithms.

In the mathematical field of graph theory, an instance of the Steiner tree problem is said to be quasi-bipartite if the non-terminal vertices in G form an independent set, i.e. if every edge is incident on at least one terminal. This generalizes the concept of a bipartite graph: if G is bipartite, and R is the set of vertices on one side of the bipartition, the set R is automatically independent.

<span class="mw-page-title-main">Relative neighborhood graph</span>

In computational geometry, the relative neighborhood graph (RNG) is an undirected graph defined on a set of points in the Euclidean plane by connecting two points and by an edge whenever there does not exist a third point that is closer to both and than they are to each other. This graph was proposed by Godfried Toussaint in 1980 as a way of defining a structure from a set of points that would match human perceptions of the shape of the set.

<span class="mw-page-title-main">Sanjeev Arora</span> Theoretical computer scientist

Sanjeev Arora is an Indian American theoretical computer scientist who works in AI and Machine learning.

In mathematics, the minimum k-cut is a combinatorial optimization problem that requires finding a set of edges whose removal would partition the graph to at least k connected components. These edges are referred to as k-cut. The goal is to find the minimum-weight k-cut. This partitioning can have applications in VLSI design, data-mining, finite elements and communication in parallel computing.

<span class="mw-page-title-main">Circular layout</span> Graph drawing with vertices on a circle

In graph drawing, a circular layout is a style of drawing that places the vertices of a graph on a circle, often evenly spaced so that they form the vertices of a regular polygon.

Approximate max-flow min-cut theorems are mathematical propositions in network flow theory. Approximate max-flow min-cut theorems deal with the relationship between maximum flow rate ("max-flow") and minimum cut ("min-cut") in a multi-commodity flow problem. The theorems have enabled the development of approximation algorithms for use in graph partition and related problems.

In theoretical computer science and metric geometry, the GNRS conjecture connects the theory of graph minors, the stretch factor of embeddings, and the approximation ratio of multi-commodity flow problems. It is named after Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair, who formulated it in 2004.

In the study of hierarchical clustering, Dasgupta's objective is a measure of the quality of a clustering, defined from a similarity measure on the elements to be clustered. It is named after Sanjoy Dasgupta, who formulated it in 2016. Its key property is that, when the similarity comes from an ultrametric space, the optimal clustering for this quality measure follows the underlying structure of the ultrametric space. In this sense, clustering methods that produce good clusterings for this objective can be expected to approximate the ground truth underlying the given similarity measure.

<span class="mw-page-title-main">Cutwidth</span> Property in graph theory

In graph theory, the cutwidth of an undirected graph is the smallest integer with the following property: there is an ordering of the vertices of the graph, such that every cut obtained by partitioning the vertices into earlier and later subsets of the ordering is crossed by at most edges. That is, if the vertices are numbered , then for every , the number of edges with and is at most .

In graph theory, the carving width of a graph is a number, defined from the graph, that describes the number of edges separating the clusters in a hierarchical clustering of the graph vertices.

References

  1. 1 2 "Satish Rao | EECS at UC Berkeley". www2.eecs.berkeley.edu. University of California, Berkeley . Retrieved 2 June 2021.
  2. "Envisioning safer cities with AI". EurekAlert!. Retrieved 2 June 2021.
  3. "Satish Rao | Simons Institute for the Theory of Computing". simons.berkeley.edu. 22 May 2013. Retrieved 2 June 2021.
  4. "Satish Rao". awards.acm.org. Association for Computing Machinery . Retrieved 2 June 2021.
  5. "Fellow Recipients". awards.acm.org. Association for Computing Machinery . Retrieved 2 June 2021.
  6. "Congratulations to Professor Arora winner of the Fulkerson Prize | Computer Science Department at Princeton University". www.cs.princeton.edu. Retrieved 2 June 2021.
  7. "Browse Prizes and Awards". American Mathematical Society. Retrieved 2 June 2021.
  8. "Satish B Rao". scholar.google.com. Retrieved 2 June 2021.