SbRNA

Last updated
sbRNA
SbRNA cons.png
Conserved secondary structure of nematode sbRNA
Identifiers
SymbolsbRNA
Other data
RNA type Gene
Domain(s) Caenorhabditis
PDB structures PDBe
Rfam

sbRNA (stem-bulge RNA) is a family of non-coding RNA first discovered in Caenorhabditis elegans . It was identified during a full transcriptome screen of the C. elegans cDNA library. [1] Subsequent experimentation characterised sbRNA as having conserved 5' and 3' internal motifs which form a long paired stem which is interrupted with a bulge. [2]

Contents

Expression

sbRNAs have variable expression patterns during development. They are most highly expressed in adult worms, dauer larvae and following heat shock. [1] A systematic knockout analysis using RNAi found no phenotype for the knockout of two sbRNAs in C. elegans, [3] however the efficiency of RNAi on ncRNA has been questioned. [4] sbRNAs contain immunoglobulin in their protein fibers to maintain rigidity, however they are at risk of infection from malfunctioning ribosomes.[ clarification needed ]

sbRNAs share common promoter elements consisting of a TATA box and a proximal sequence element (PSE B box), though only one of these is required for transcription. [5] As the transcript is uncapped and polyuridylated, it is thought to be transcribed by RNA polymerase III. [6]

Y RNA homology

An sbRNA, CeN134 was reported as a candidate homologue to the vertebrate Y RNA during a kingdom-wide search. [7] Further investigation found a homologous secondary structure with a conserved helical regions and a common UUAUC loop motif. [6]

The function of sbRNAs may therefore be similar to that of vertebrate Y RNAs, namely acting as part of the Ro-RNA particle to control RNA quality [8] and playing a role in chromosomal replication. [9] Deletion of sbRNA does not prevent chromosome replication in C. elegans, but this may be a result of other sbRNAs substituting missing elements (as in human Y RNA). This theory also explains why RNAi studies failed to detect a phenotype for knocked out sbRNAs. [6]

See also

Related Research Articles

<i>Caenorhabditis elegans</i> Free-living species of nematode

Caenorhabditis elegans is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek caeno- (recent), rhabditis (rod-like) and Latin elegans (elegant). In 1900, Maupas initially named it Rhabditides elegans. Osche placed it in the subgenus Caenorhabditis in 1952, and in 1955, Dougherty raised Caenorhabditis to the status of genus.

Gene knockdown is an experimental technique by which the expression of one or more of an organism's genes is reduced. The reduction can occur either through genetic modification or by treatment with a reagent such as a short DNA or RNA oligonucleotide that has a sequence complementary to either gene or an mRNA transcript.

Teneurins are a family of phylogenetically conserved single-pass transmembrane glycoproteins expressed during pattern formation and morphogenesis. The name refers to "ten-a" and "neurons", the primary site of teneurin expression. Ten-m refers to tenascin-like protein major.

Y RNA

Y RNAs are small non-coding RNAs. They are components of the Ro60 ribonucleoprotein particle which is a target of autoimmune antibodies in patients with systemic lupus erythematosus. They are also reported to be necessary for DNA replication through interactions with chromatin and initiation proteins. However, mouse embryonic stem cells lacking Y RNAs are viable and have normal cell cycles.

The Let-7 microRNA precursor was identified from a study of developmental timing in C. elegans, and was later shown to be part of a much larger class of non-coding RNAs termed microRNAs. miR-98 microRNA precursor from human is a let-7 family member. Let-7 miRNAs have now been predicted or experimentally confirmed in a wide range of species (MIPF0000002). miRNAs are initially transcribed in long transcripts called primary miRNAs (pri-miRNAs), which are processed in the nucleus by Drosha and Pasha to hairpin structures of about 70 nucleotide. These precursors (pre-miRNAs) are exported to the cytoplasm by exportin5, where they are subsequently processed by the enzyme Dicer to a ~22 nucleotide mature miRNA. The involvement of Dicer in miRNA processing demonstrates a relationship with the phenomenon of RNA interference.

5-3 exoribonuclease 2 Protein-coding gene in the species Homo sapiens

5'-3' Exoribonuclease 2 (XRN2) also known as Dhm1-like protein is an exoribonuclease enzyme that in humans is encoded by the XRN2 gene.

<span class="mw-page-title-main">Animal testing on invertebrates</span> Overview article

Most animal testing involves invertebrates, especially Drosophila melanogaster, a fruit fly, and Caenorhabditis elegans, a nematode. These animals offer scientists many advantages over vertebrates, including their short life cycle, simple anatomy and the ease with which large numbers of individuals may be studied. Invertebrates are often cost-effective, as thousands of flies or nematodes can be housed in a single room.

TNRC6A

Trinucleotide repeat-containing gene 6A protein is a protein that in humans is encoded by the TNRC6A gene.

<span class="mw-page-title-main">UPF3B</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 3B is a protein that in humans is encoded by the UPF3B gene.

Exosome component 10 Protein-coding gene in the species Homo sapiens

Exosome component 10, also known as EXOSC10, is a human gene, the protein product of which is part of the exosome complex and is an autoantigen is patients with certain auto immune diseases, most notably scleromyositis.

TROVE2 Protein-coding gene in the species Homo sapiens

60 kDa SS-A/Ro ribonucleoprotein is a protein that in humans is encoded by the TROVE2 gene.

TFB2M Protein-coding gene in the species Homo sapiens

Dimethyladenosine transferase 2; transcription factor B2, mitochondrial is an enzyme that in humans is encoded by the TFB2M gene.

Small RNAs (sRNAs) have been identified within the C. elegans genome and comparative genomics has shown that they are conserved across several nematode species. These sRNAs contain a characteristic 2,2,7-trimethylguanosine (TMG) cap structure that identifies them as non-coding RNAs that have a functional role within the cell but at present the exact function of these sRNAs is unknown. Immunoprecipitation using antibodies against TMG and RNA microarrays were used to identify these sRNA.

Cdc14 and Cdc14 are a gene and its protein product respectively. Cdc14 is found in most of the eukaryotes. Cdc14 was defined by Hartwell in his famous screen for loci that control the cell cycle of Saccharomyces cerevisiae. Cdc14 was later shown to encode a protein phosphatase. Cdc14 is dual-specificity, which means it has serine/threonine and tyrosine-directed activity. A preference for serines next to proline is reported. Many early studies, especially in the budding yeast Saccharomyces cerevisiae, demonstrated that the protein plays a key role in regulating late mitotic processes. However, more recent work in a range of systems suggests that its cellular function is more complex.

<span class="mw-page-title-main">RNA interference</span> Biological process of gene regulation

RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression by double-stranded RNA, through translational or transcriptional repression. Historically, RNAi was known by other names, including co-suppression, post-transcriptional gene silencing (PTGS), and quelling. The detailed study of each of these seemingly different processes elucidated that the identity of these phenomena were all actually RNAi. Andrew Fire and Craig C. Mello shared the 2006 Nobel Prize in Physiology or Medicine for their work on RNAi in the nematode worm Caenorhabditis elegans, which they published in 1998. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in suppression of desired genes. RNAi is now known as precise, efficient, stable and better than antisense therapy for gene suppression. Antisense RNA produced intracellularly by an expression vector may be developed and find utility as novel therapeutic agents.

La domain

In molecular biology, the La domain is a conserved protein domain.

RDE-1 is a primary Argonaute protein required for RNA-mediated interference (RNAi) in Caenorhabditis elegans. The rde-1 gene locus was first characterized in C. elegans mutants resistant to RNAi, and is a member of a highly conserved Piwi gene family that includes plant, Drosophila, and vertebrate homologs.

<span class="mw-page-title-main">Julie Ahringer</span> American geneticist

Julie Ann Ahringer is an American/British Professor of Genetics and Genomics, Director of the Gurdon Institute and a member of the Department of Genetics at the University of Cambridge. She leads a research lab investigating the control of gene expression.

Host microbe interactions in <i>Caenorhabditis elegans</i>

Caenorhabditis elegans- microbe interactions are defined as any interaction that encompasses the association with microbes that temporarily or permanently live in or on the nematode C. elegans. The microbes can engage in a commensal, mutualistic or pathogenic interaction with the host. These include bacterial, viral, unicellular eukaryotic, and fungal interactions. In nature C. elegans harbours a diverse set of microbes. In contrast, C. elegans strains that are cultivated in laboratories for research purposes have lost the natural associated microbial communities and are commonly maintained on a single bacterial strain, Escherichia coli OP50. However, E. coli OP50 does not allow for reverse genetic screens because RNAi libraries have only been generated in strain HT115. This limits the ability to study bacterial effects on host phenotypes. The host microbe interactions of C. elegans are closely studied because of their orthologs in humans. Therefore, the better we understand the host interactions of C. elegans the better we can understand the host interactions within the human body.

<span class="mw-page-title-main">Sandra Wolin</span> American microbiologist and physician-scientist

Sandra Lynn Wolin is an American microbiologist and physician-scientist specialized in biogenesis, function, and turnover of non-coding RNA. She is chief of the RNA Biology Laboratory at the National Cancer Institute.

References

  1. 1 2 Deng W, Zhu X, Skogerbø G, et al. (January 2006). "Organization of the Caenorhabditis elegans small non-coding transcriptome: genomic features, biogenesis, and expression". Genome Res. 16 (1): 20–9. doi:10.1101/gr.4139206. PMC   1356125 . PMID   16344563.
  2. Aftab MN; He H; Skogerbø G; Chen R (2008). "Microarray analysis of ncRNA expression patterns in Caenorhabditis elegans after RNAi against snoRNA associated proteins". BMC Genomics. 9: 278. doi:10.1186/1471-2164-9-278. PMC   2442092 . PMID   18547420.
  3. Kamath RS, Fraser AG, Dong Y, et al. (January 2003). "Systematic functional analysis of the Caenorhabditis elegans genome using RNAi". Nature. 421 (6920): 231–7. doi:10.1038/nature01278. hdl:10261/63159. PMID   12529635. S2CID   15745225.
  4. Ploner A; Ploner C; Lukasser M; Niederegger H; Hüttenhofer A (October 2009). "Methodological obstacles in knocking down small noncoding RNAs". RNA. 15 (10): 1797–804. doi:10.1261/rna.1740009. PMC   2743047 . PMID   19690100.
  5. Li T; He H; Wang Y; Zheng H; Skogerbø G; Chen R (2008). "In vivo analysis of Caenorhabditis elegans noncoding RNA promoter motifs". BMC Mol. Biol. 9: 71. doi:10.1186/1471-2199-9-71. PMC   2527325 . PMID   18680611.
  6. 1 2 3 Boria I, Gruber AR, Tanzer A, et al. (April 2010). "Nematode sbRNAs: homologs of vertebrate Y RNAs". J. Mol. Evol. 70 (4): 346–58. doi:10.1007/s00239-010-9332-4. PMID   20349053. S2CID   876486.
  7. Perreault J; Perreault JP; Boire G (August 2007). "Ro-associated Y RNAs in metazoans: evolution and diversification". Mol. Biol. Evol. 24 (8): 1678–89. doi: 10.1093/molbev/msm084 . PMID   17470436.
  8. Stein AJ; Fuchs G; Fu C; Wolin SL; Reinisch KM (May 2005). "Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity". Cell. 121 (4): 529–39. doi:10.1016/j.cell.2005.03.009. PMC   1769319 . PMID   15907467.
  9. Christov CP; Gardiner TJ; Szüts D; Krude T (September 2006). "Functional requirement of noncoding Y RNAs for human chromosomal DNA replication". Mol. Cell. Biol. 26 (18): 6993–7004. doi:10.1128/MCB.01060-06. PMC   1592862 . PMID   16943439.

Further reading