Schur's inequality

Last updated

In mathematics, Schur's inequality , named after Issai Schur, establishes that for all non-negative real numbers x, y, z, and t>0,

Contents

with equality if and only if x = y = z or two of them are equal and the other is zero. When t is an even positive integer, the inequality holds for all real numbers x, y and z.

When , the following well-known special case can be derived:

Proof

Since the inequality is symmetric in we may assume without loss of generality that . Then the inequality

clearly holds, since every term on the left-hand side of the inequality is non-negative. This rearranges to Schur's inequality.

Extensions

A generalization of Schur's inequality is the following: Suppose a,b,c are positive real numbers. If the triples (a,b,c) and (x,y,z) are similarly sorted, then the following inequality holds:

In 2007, Romanian mathematician Valentin Vornicu showed that a yet further generalized form of Schur's inequality holds:

Consider , where , and either or . Let , and let be either convex or monotonic. Then,

The standard form of Schur's is the case of this inequality where x = a, y = b, z = c, k = 1, ƒ(m) = mr. [1]

Another possible extension states that if the non-negative real numbers with and the positive real number t are such that x + v  y + z then [2]

Notes

  1. Vornicu, Valentin; Olimpiada de Matematica... de la provocare la experienta; GIL Publishing House; Zalau, Romania.
  2. Finta, Béla (2015). "A Schur Type Inequality for Five Variables". Procedia Technology. 19: 799–801. doi: 10.1016/j.protcy.2015.02.114 .

Related Research Articles

<span class="mw-page-title-main">Absolute value</span> Distance from zero to a number

In mathematics, the absolute value or modulus of a real number , denoted , is the non-negative value of without regard to its sign. Namely, if is a positive number, and if is negative, and . For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3. The absolute value of a number may be thought of as its distance from zero.

<span class="mw-page-title-main">Complex number</span> Number with a real and an imaginary part

In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number ,a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world.

<span class="mw-page-title-main">Inner product space</span> Generalization of the dot product; used to define Hilbert spaces

In mathematics, an inner product space is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.

In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard orderings.

The Cauchy–Schwarz inequality is an upper bound on the inner product between two vectors in an inner product space in terms of the product of the vector norms. It is considered one of the most important and widely used inequalities in mathematics.

In mathematics, the infimum of a subset of a partially ordered set is the greatest element in that is less than or equal to each element of if such an element exists. If the infimum of exists, it is unique, and if b is a lower bound of , then b is less than or equal to the infimum of . Consequently, the term greatest lower bound is also commonly used. The supremum of a subset of a partially ordered set is the least element in that is greater than or equal to each element of if such an element exists. If the supremum of exists, it is unique, and if b is an upper bound of , then the supremum of is less than or equal to b. Consequently, the supremum is also referred to as the least upper bound.

In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of

<span class="mw-page-title-main">Inequality (mathematics)</span> Mathematical relation expressed with < or ≤

In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. The main types of inequality are less than and greater than.

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics.

<span class="mw-page-title-main">Convex function</span> Real function with secant line between points above the graph itself

In mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph is a convex set. In simple terms, a convex function graph is shaped like a cup , while a concave function's graph is shaped like a cap .

In mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete ordered field exists, and the existence proof consists of constructing a mathematical structure that satisfies the definition.

<span class="mw-page-title-main">AM–GM inequality</span> Arithmetic mean is greater than or equal to geometric mean

In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and further, that the two means are equal if and only if every number in the list is the same.

In mathematics, a positive-definite function is, depending on the context, either of two types of function.

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

In linear algebra, a sublinear function, also called a quasi-seminorm or a Banach functional, on a vector space is a real-valued function with only some of the properties of a seminorm. Unlike seminorms, a sublinear function does not have to be nonnegative-valued and also does not have to be absolutely homogeneous. Seminorms are themselves abstractions of the more well known notion of norms, where a seminorm has all the defining properties of a norm except that it is not required to map non-zero vectors to non-zero values.

In mathematics, majorization is a preorder on vectors of real numbers. For two such vectors, , we say that weakly majorizesfrom below, commonly denoted when

The M. Riesz extension theorem is a theorem in mathematics, proved by Marcel Riesz during his study of the problem of moments.

The absolute difference of two real numbers and is given by , the absolute value of their difference. It describes the distance on the real line between the points corresponding to and . It is a special case of the Lp distance for all and is the standard metric used for both the set of rational numbers and their completion, the set of real numbers .

In mathematics, there are many kinds of inequalities involving matrices and linear operators on Hilbert spaces. This article covers some important operator inequalities connected with traces of matrices.