SeSaM-Biotech GmbH

Last updated
SeSaM-Biotech GmbH
Type Private
Industry Biotechnology, contract research organization
Founded2008
FounderUlrich Schwaneberg, Jacobs University Bremen
Headquarters,
Germany
ServicesProtein engineering projects, gene libraries, assay development, consulting, computational analyses
Number of employees
9 (2017)
Website www.sesam-biotech.com

SeSaM-Biotech GmbH (in short SeSaM-Biotech) is a biotechnology service company founded in 2008 in Bremen and localized in Aachen today.

Contents

The company has a main focus on Protein Engineering projects based on the QuESt (Quality Enzyme Solutions) strategy and gene library generation using its patented platform technology Sequence Saturation Mutagenesis.

Company

The SeSaM-Biotech GmbH was founded in 2008 as a spin-off of Jacobs University Bremen by Prof. Ulrich Schwaneberg who had developed and improved the patented key technology Sequence Saturation Mutagenesis (SeSaM) in the preceding years, [1] [2] [3] In 2012, SeSaM-Biotech moved to its new facilities at the Leibniz-Institute for Interactive Materials (DWI) in Aachen. [4] Today, it is a small company in the growing Biotechnology sector providing mainly services to diverse customers from the Biotechnology industry. Starting from SeSaM library generation, SeSaM-Biotech now applies a variety of random and focused mutagenesis methods in combination with developing and applying high-throughput screening assays for the realization of extensive protein engineering projects according to the KnowVolution strategy. [5] Besides, internal research is performed for the further development of the in-house techniques and the expansion of the product range beyond protein engineering service provision.

Sequence Saturation Mutagenesis method

SeSaM has been developed by Prof. Schwaneberg and his group in order to overcome several of the major limitations encountered when working with standard mutagenesis methods based on simple error-prone PCR (epPCR) techniques. By non-specific introduction of universal or degenerate bases at every position in the gene sequence, SeSaM overcomes the polymerase bias favoring transitory substitutions at specific positions but opens the complete gene sequence to a diverse array of amino acid exchanges,. [6] [7] With continuous research by SeSaM-Biotech and the Schwaneberg group, several modifications of the SeSaM method were introduced that especially allowed for the introduction of consecutive mutations and a further shift of the mutational bias towards transversion substitutions, [8] [9] [10] [11] generating a versatile tool for protein engineering and evolution.

Services and Products

SeSaM-Biotech holds the patent for the Sequence Saturation Mutagenesis method for random mutagenesis, but applies also additional techniques for random and focused mutagenesis such as the licensed OmniChange method. [12] These mutagenesis methods are applied to generate gene libraries for customers or are used in comprehensive protein engineering projects including random and knowledge-based diversity generation, assay development and variant screening. Besides, SeSaM-Biotech offers single enzyme services for assay development, computational analysis and in the consulting sector. A line of business for the production and sales of premium reagents for biotechnology application is under development. [13]

Related Research Articles

Mutagenesis is a process by which the genetic information of an organism is changed by the production of a mutation. It may occur spontaneously in nature, or as a result of exposure to mutagens. It can also be achieved experimentally using laboratory procedures. A mutagen is a mutation-causing agent, be it chemical or physical, which results in an increased rate of mutations in an organism's genetic code. In nature mutagenesis can lead to cancer and various heritable diseases, and it is also a driving force of evolution. Mutagenesis as a science was developed based on work done by Hermann Muller, Charlotte Auerbach and J. M. Robson in the first half of the 20th century.

Protein engineering is the process of developing useful or valuable protein and design and production of unnatural polypeptides, often by altering amino acid sequences found in nature. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. It has been used to improve the function of many enzymes for industrial catalysis. It is also a product and services market, with an estimated value of $168 billion by 2017.

<span class="mw-page-title-main">DNA synthesis</span>

DNA synthesis is the natural or artificial creation of deoxyribonucleic acid (DNA) molecules. DNA is a macromolecule made up of nucleotide units, which are linked by covalent bonds and hydrogen bonds, in a repeating structure. DNA synthesis occurs when these nucleotide units are joined to form DNA; this can occur artificially or naturally. Nucleotide units are made up of a nitrogenous base, pentose sugar (deoxyribose) and phosphate group. Each unit is joined when a covalent bond forms between its phosphate group and the pentose sugar of the next nucleotide, forming a sugar-phosphate backbone. DNA is a complementary, double stranded structure as specific base pairing occurs naturally when hydrogen bonds form between the nucleotide bases.

Site-directed mutagenesis is a molecular biology method that is used to make specific and intentional mutating changes to the DNA sequence of a gene and any gene products. Also called site-specific mutagenesis or oligonucleotide-directed mutagenesis, it is used for investigating the structure and biological activity of DNA, RNA, and protein molecules, and for protein engineering.

<span class="mw-page-title-main">Library (biology)</span>

In molecular biology, a library is a collection of DNA fragments that is stored and propagated in a population of micro-organisms through the process of molecular cloning. There are different types of DNA libraries, including cDNA libraries, genomic libraries and randomized mutant libraries. DNA library technology is a mainstay of current molecular biology, genetic engineering, and protein engineering, and the applications of these libraries depend on the source of the original DNA fragments. There are differences in the cloning vectors and techniques used in library preparation, but in general each DNA fragment is uniquely inserted into a cloning vector and the pool of recombinant DNA molecules is then transferred into a population of bacteria or yeast such that each organism contains on average one construct. As the population of organisms is grown in culture, the DNA molecules contained within them are copied and propagated.

<span class="mw-page-title-main">Functional genomics</span> Field of molecular biology

Functional genomics is a field of molecular biology that attempts to describe gene functions and interactions. Functional genomics make use of the vast data generated by genomic and transcriptomic projects. Functional genomics focuses on the dynamic aspects such as gene transcription, translation, regulation of gene expression and protein–protein interactions, as opposed to the static aspects of the genomic information such as DNA sequence or structures. A key characteristic of functional genomics studies is their genome-wide approach to these questions, generally involving high-throughput methods rather than a more traditional "gene-by-gene" approach.

<span class="mw-page-title-main">Directed evolution</span> Protein engineering method

Directed evolution (DE) is a method used in protein engineering that mimics the process of natural selection to steer proteins or nucleic acids toward a user-defined goal. It consists of subjecting a gene to iterative rounds of mutagenesis, selection and amplification. It can be performed in vivo, or in vitro. Directed evolution is used both for protein engineering as an alternative to rationally designing modified proteins, as well as for experimental evolution studies of fundamental evolutionary principles in a controlled, laboratory environment.

<span class="mw-page-title-main">DNA shuffling</span>

DNA shuffling, also known as molecular breeding, is an in vitro random recombination method to generate mutant genes for directed evolution and to enable a rapid increase in DNA library size. Three procedures for accomplishing DNA shuffling are molecular breeding which relies on homologous recombination or the similarity of the DNA sequences, restriction enzymes which rely on common restriction sites, and nonhomologous random recombination which requires the use of hairpins. In all of these techniques, the parent genes are fragmented and then recombined.

The polymerase chain reaction (PCR) is a commonly used molecular biology tool for amplifying DNA, and various techniques for PCR optimization which have been developed by molecular biologists to improve PCR performance and minimize failure.

Biomolecular engineering is the application of engineering principles and practices to the purposeful manipulation of molecules of biological origin. Biomolecular engineers integrate knowledge of biological processes with the core knowledge of chemical engineering in order to focus on molecular level solutions to issues and problems in the life sciences related to the environment, agriculture, energy, industry, food production, biotechnology and medicine.

<span class="mw-page-title-main">Uracil-DNA glycosylase</span> Enzyme that repairs DNA damage

Uracil-DNA glycosylase is also known as UNG or UDG. Its most important function is to prevent mutagenesis by eliminating uracil from DNA molecules by cleaving the N-glycosidic bond and initiating the base-excision repair (BER) pathway.

<span class="mw-page-title-main">CDK13</span>

Cyclin dependent kinase 13 is an enzyme that in humans is encoded by the CDK13 gene.

<span class="mw-page-title-main">Eyes absent homolog 4</span>

Eyes absent homolog 4 is a protein that in humans is encoded by the EYA4 gene.

<span class="mw-page-title-main">Knockout rat</span> Type of genetically engineered rat

A knockout rat is a genetically engineered rat with a single gene turned off through a targeted mutation used for academic and pharmaceutical research. Knockout rats can mimic human diseases and are important tools for studying gene function and for drug discovery and development. The production of knockout rats was not economically or technically feasible until 2008.

<span class="mw-page-title-main">Saturation mutagenesis</span>

Site saturation mutagenesis (SSM), or simply site saturation, is a random mutagenesis technique used in protein engineering, in which a single codon or set of codons is substituted with all possible amino acids at the position. There are many variants of the site saturation technique, from paired site saturation (saturating two positions in every mutant in the library) to scanning site saturation (performing a site saturation at every site in the protein, resulting in a library of size [20 x (number of residues in the protein)] that contains every possible point mutant of the protein).

<span class="mw-page-title-main">Mutagenesis (molecular biology technique)</span>

In molecular biology, mutagenesis is an important laboratory technique whereby DNA mutations are deliberately engineered to produce libraries of mutant genes, proteins, strains of bacteria, or other genetically modified organisms. The various constituents of a gene, as well as its regulatory elements and its gene products, may be mutated so that the functioning of a genetic locus, process, or product can be examined in detail. The mutation may produce mutant proteins with interesting properties or enhanced or novel functions that may be of commercial use. Mutant strains may also be produced that have practical application or allow the molecular basis of a particular cell function to be investigated.

Sequence saturation mutagenesis (SeSaM) is a chemo-enzymatic random mutagenesis method applied for the directed evolution of proteins and enzymes. It is one of the most common saturation mutagenesis techniques. In four PCR-based reaction steps, phosphorothioate nucleotides are inserted in the gene sequence, cleaved and the resulting fragments elongated by universal or degenerate nucleotides. These nucleotides are then replaced by standard nucleotides, allowing for a broad distribution of nucleic acid mutations spread over the gene sequence with a preference to transversions and with a unique focus on consecutive point mutations, both difficult to generate by other mutagenesis techniques. The technique was developed by Professor Ulrich Schwaneberg at Jacobs University Bremen and RWTH Aachen University.

Sesam, SESAM or SeSaM may refer to:

Ulrich Schwaneberg is a German chemist and protein engineer. He is the Chair of Biotechnology at RWTH Aachen University and member of the scientific board at the Leibniz Institute for Interactive Materials in Aachen. He specializes in directed evolution of proteins for material science applications and on the development of its methodologies. The latter comprise methods for diversity generation, as well as high-throughput screening systems. His work group has elucidated general design principles of enzymes by analyzing libraries that contain the full natural diversity of a hydrolase with single amino acid exchanges and developed strategies to efficiently explore the protein sequence space and discovered protein engineering principles.

Genetic saturation is the result of multiple substitutions at the same site in a sequence, or identical substitutions in different sequences, such that the apparent sequence divergence rate is lower than the actual divergence that has occurred. When comparing two or more genetic sequences consisting of single nucleotides, differences in sequence observed are only differences in the final state of the nucleotide sequence. Single nucleotides that undergoing genetic saturation change multiple times, sometimes back to their original nucleotide or to a nucleotide common to the compared genetic sequence. Without genetic information from intermediate taxa, it is difficult to know how much, or if any saturation has occurred on an observed sequence. Genetic saturation occurs most rapidly on fast-evolving sequences, such as the hypervariable region of mitochondrial DNA, or in short tandem repeats such as on the Y-chromosome.

References

  1. Wong, T.S.; Tee, K.L.; Hauer, B.; Schwaneberg, U. (2004). "Sequence Saturation Mutagenesis (SeSaM): a novel method for directed protein evolution". Nucleic Acids Res. 32 (3): e26. doi:10.1093/nar/gnh028. PMC   373423 . PMID   14872057.
  2. Wong, T.S.; Tee, K.L.; Hauer, B.; Schwaneberg, U. (2005). "Sequence saturation mutagenesis with tunable mutation frequencies". Anal. Biochem. 341 (1): 187–189. doi:10.1016/j.ab.2005.03.023. PMID   15866543.
  3. Wong, T.S.; Roccatano, D.; Loakes, D.; Tee, K.L.; Schenk, A.; Hauer, B.; Schwaneberg, U. (2008). "Transversion-enriched sequence saturation mutagenesis (SeSaM-Tv+): A random mutagenesis method with consecutive nucleotide exchanges that complements the bias of error-prone PCR". Biotechnol. J. 3 (1): 74–82. doi:10.1002/biot.200700193. PMID   18022859. S2CID   9111046.
  4. . Moneyhouse. Retrieved April 24, 2017.
  5. Cheng, F.; Zhu, L.; Schwaneberg, U. (2015). "Directed evolution 2.0: improving and deciphering enzyme properties" (PDF). Chem. Commun. 51 (48): 9760–9772. doi:10.1039/c5cc01594d. PMID   25874672.
  6. Wong, T.S.; Tee, K.L.; Hauer, B.; Schwaneberg, U. (2004). "Sequence Saturation Mutagenesis (SeSaM): a novel method for directed protein evolution". Nucleic Acids Res. 32 (3): e26. doi:10.1093/nar/gnh028. PMC   373423 . PMID   14872057.
  7. Wong, T.S.; Roccatano, D.; Loakes, D.; Tee, K.L.; Schenk, A.; Hauer, B.; Schwaneberg, U. (2008). "Transversion-enriched sequence saturation mutagenesis (SeSaM-Tv+): A random mutagenesis method with consecutive nucleotide exchanges that complements the bias of error-prone PCR". Biotechnol. J. 3 (1): 74–82. doi:10.1002/biot.200700193. PMID   18022859. S2CID   9111046.
  8. Wong, T.S.; Tee, K.L.; Hauer, B.; Schwaneberg, U. (2005). "Sequence saturation mutagenesis with tunable mutation frequencies". Anal. Biochem. 341 (1): 187–189. doi:10.1016/j.ab.2005.03.023. PMID   15866543.
  9. Mundhada, H.; Marienhagen, J.; Scacioc, A.; Schenk, A.; Roccatano, D.; Schwaneberg, U. (2011). "SeSaM-Tv-II generates a protein sequence space that is unobtainable by epPCR". ChemBioChem. 12 (10): 1595–1601. doi:10.1002/cbic.201100010. PMID   21671328. S2CID   31951491.
  10. Ruff, A.J.; Marienhagen, J.; Verma, R.; Roccatano, D.; Genieser, H.-G.; Niemann, R.; Shivange, A.V.; Schwaneberg, U. (2012). "dRTP and dPTP a complementary nucleotide couple for the Sequence Saturation Mutagenesis (SeSaM) method". J Mol Catal B-Enzym. 84: 40–47. doi:10.1016/j.molcatb.2012.04.018.
  11. Zhao, J.; Kardashliev, T.; Ruff, A.J.; Bocola, M.; Schwaneberg, M. (2014). "Lessons from diversity of directed evolution experiments by an analysis of 3000 mutations". Biotechnol Bioeng. 111 (2): 2380–2389. doi:10.1002/bit.25302. PMID   24904008. S2CID   27297091.
  12. Dennig, A.; Shivange, A.V.; Marienhagen, J.; Schwaneberg, U. (2011). "OmniChange: The sequence independent method for simultaneous site-saturation of five codons". PLOS ONE. 6 (10): e26222. Bibcode:2011PLoSO...626222D. doi: 10.1371/journal.pone.0026222 . PMC   3198389 . PMID   22039444.
  13. . SeSaM-Biotech GmbH official homepage. Retrieved April 25, 2017.