Seaborg Technologies

Last updated

Seaborg Technologies
Company typePrivate company
Industry Nuclear Power
Founded2015
Headquarters,
Products
Number of employees
>100 [1]  (2022)
Website https://www.seaborg.com/

Seaborg Technologies is a private Danish startup. It is developing small molten salt reactors. [2] [3] Founded in 2015 and based in Copenhagen, Denmark, Seaborg emerged as a small team of physicists, chemists, and engineers with educational roots at the Niels Bohr Institute, CERN, ESS (European Spallation Source) and DTU (Technical University of Denmark) who share a common vision of safe, sustainable and cheap nuclear power. [4]

Contents

Compact Molten Salt Reactor

The reactor designed by Seaborg Technologies is called the Compact Molten Salt Reactor (CMSR). The company claims that it is inherently safe, significantly smaller, better for the environment, and inexpensive even compared to fossil fuel-based electricity. [5] [3]

Conventional nuclear reactors have solid fuel rods that need constant cooling, typically using water under high pressure. Water is abundantly available but its low boiling point is a vulnerability creating a potential point of failure. In contrast, in a CMSR, fuel is mixed in a liquid salt whose boiling point is far above the temperatures produced by the fission products. This enables it to operate stably at a pressure of one atmosphere. [3]

Unlike other thermal spectrum molten salt reactors the CMSR was originally planned to not use graphite as a moderator. Instead it would have used molten Sodium hydroxide (NaOH) contained in pipes adjacent to and interlaced with pipes that contain the molten fuel salt. This enabled a more compact design. It also allowed the liquid moderator to be rapidly removed from the core as a fission control mechanism. [6] In early 2023 however, Seaborg made the decision to switch at least the first generation of developed reactors to Low-Enriched Uranium (LEU), instead of the originally planned High-Assay-Low-Enriched Uranium (HALEU) due to potential issues with HALEU supply, which did not meet their desired timeline for the CMSR. This involved switching the moderator to graphite from NaOH as well. [7]

In the case of an overheating accident, a frozen salt plug at the base of the reactor melts and the liquid fuel flows out of the reactor core away from the moderator into cooled tanks where the reaction quenches, the fuel cools and solidifies, without dispersing in the surrounding environment. [6]

The approach mitigates the danger of a failure rather than eliminating all failures. [6]

Deployment

The company intends to deploy its shipping container sized reactors on barges. Reactors are manufactured at scale in a central facility, reducing costs. Using barges makes them mobile. Single reactor output is estimated to be 100 MWe. Multiple units could be deployed on a single barge. [8]

The primary design challenge is in preventing the highly corrosive fuel slurry and moderator from damaging the reactor. [6]

The fueling cycle is 12 years. It offers no proliferation risk or military applications. [6]

Seaborg Technologies hopes to deliver the first power barge in 2028. [8]

Related Research Articles

<span class="mw-page-title-main">Nuclear reactor</span> Device for controlled nuclear reactions

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. When a fissile nucleus like uranium-235 or plutonium-239 absorbs a neutron, it splits into lighter nuclei, releasing energy, gamma radiation, and free neutrons, which can induce further fission in a self-sustaining chain reaction. The process is carefully controlled using control rods and neutron moderators to regulate the number of neutrons that continue the reaction, ensuring the reactor operates safely.

<span class="mw-page-title-main">Pressurized water reactor</span> Type of nuclear reactor

A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants. In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators.

<span class="mw-page-title-main">Nuclear fuel cycle</span> Process of manufacturing and consuming nuclear fuel

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

<span class="mw-page-title-main">Fast-neutron reactor</span> Nuclear reactor where fast neutrons maintain a fission chain reaction

A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest was the Superphénix sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been studied since the 1950s, as they provide certain advantages over the existing fleet of water-cooled and water-moderated reactors. These are:

<span class="mw-page-title-main">Loss-of-coolant accident</span> Form of nuclear reactor failure.

A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically to deal with a LOCA.

In nuclear engineering, the void coefficient is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids form in the reactor moderator or coolant. Net reactivity in a reactor depends on several factors, one of which is the void coefficient. Reactors in which either the moderator or the coolant is a liquid will typically have a void coefficient which is either negative or positive. Reactors in which neither the moderator nor the coolant is a liquid will have a zero void coefficient. It is unclear how the definition of "void" coefficient applies to reactors in which the moderator/coolant is neither liquid nor gas.

<span class="mw-page-title-main">Light-water reactor</span> Type of nuclear reactor that uses normal water

The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reactors are the most common type of nuclear reactor, and light-water reactors are the most common type of thermal-neutron reactor.

Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency. Such design features tend to rely on the engineering of components such that their predicted behaviour would slow down, rather than accelerate the deterioration of the reactor state; they typically take advantage of natural forces or phenomena such as gravity, buoyancy, pressure differences, conduction or natural heat convection to accomplish safety functions without requiring an active power source. Many older common reactor designs use passive safety systems to a limited extent, rather, relying on active safety systems such as diesel-powered motors. Some newer reactor designs feature more passive systems; the motivation being that they are highly reliable and reduce the cost associated with the installation and maintenance of systems that would otherwise require multiple trains of equipment and redundant safety class power supplies in order to achieve the same level of reliability. However, weak driving forces that power many passive safety features can pose significant challenges to effectiveness of a passive system, particularly in the short term following an accident.

<span class="mw-page-title-main">Molten-salt reactor</span> Type of nuclear reactor cooled by molten material

A molten-salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a mixture of molten salt with a fissile material.

<span class="mw-page-title-main">Nuclear fuel</span> Material fuelling nuclear reactors

Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission. Nuclear fuel has the highest energy density of all practical fuel sources. The processes involved in mining, refining, purifying, using, and disposing of nuclear fuel are collectively known as the nuclear fuel cycle.

<span class="mw-page-title-main">Aqueous homogeneous reactor</span> Type of nuclear reactor

Aqueous homogeneous reactors (AHR) is a two (2) chamber reactor consisting of an interior reactor chamber and an outside cooling and moderating jacket chamber. They are a type of nuclear reactor in which soluble nuclear salts are dissolved in water. The fuel is mixed with heavy or light water which partially moderates and cools the reactor. The outside layer of the reactor has more water which also partially cools and acts as a moderator. The water can be either heavy water or ordinary (light) water, which slows neutrons and helps facilitate a stable reaction, both of which need to be very pure.

Generation IVreactors are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) – an international organization that coordinates the development of generation IV reactors – specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost. The World Nuclear Association in 2015 suggested that some might enter commercial operation before 2030.

<span class="mw-page-title-main">Nuclear reactor core</span> Central portion of a nuclear reactor containing nuclear fuel

A nuclear reactor core is the portion of a nuclear reactor containing the nuclear fuel components where the nuclear reactions take place and the heat is generated. Typically, the fuel will be low-enriched uranium contained in thousands of individual fuel pins. The core also contains structural components, the means to both moderate the neutrons and control the reaction, and the means to transfer the heat from the fuel to where it is required, outside the core.

<span class="mw-page-title-main">Molten-Salt Reactor Experiment</span> Nuclear reactor, Oak Ridge 1965–1969

The Molten-Salt Reactor Experiment (MSRE) was an experimental molten-salt reactor research reactor at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. This technology was researched through the 1960s, the reactor was constructed by 1964, it went critical in 1965, and was operated until 1969. The costs of a cleanup project were estimated at $130 million.

<span class="mw-page-title-main">Liquid fluoride thorium reactor</span> Type of nuclear reactor that uses molten material as fuel

The liquid fluoride thorium reactor is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based molten (liquid) salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where the heat is transferred to a nonradioactive secondary salt. The secondary salt then transfers its heat to a steam turbine or closed-cycle gas turbine.

A pressurized heavy-water reactor (PHWR) is a nuclear reactor that uses heavy water (deuterium oxide D2O) as its coolant and neutron moderator. PHWRs frequently use natural uranium as fuel, but sometimes also use very low enriched uranium. The heavy water coolant is kept under pressure to avoid boiling, allowing it to reach higher temperature (mostly) without forming steam bubbles, exactly as for a pressurized water reactor (PWR). While heavy water is very expensive to isolate from ordinary water (often referred to as light water in contrast to heavy water), its low absorption of neutrons greatly increases the neutron economy of the reactor, avoiding the need for enriched fuel. The high cost of the heavy water is offset by the lowered cost of using natural uranium and/or alternative fuel cycles. As of the beginning of 2001, 31 PHWRs were in operation, having a total capacity of 16.5 GW(e), representing roughly 7.76% by number and 4.7% by generating capacity of all current operating reactors.

<span class="mw-page-title-main">Thorium-based nuclear power</span> Nuclear energy extracted from thorium isotopes

Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium. A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle—including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced nuclear waste production. One advantage of thorium fuel is its low weaponization potential. It is difficult to weaponize the uranium-233 that is bred in the reactor. Plutonium-239 is produced at much lower levels and can be consumed in thorium reactors.

<span class="mw-page-title-main">Integral Molten Salt Reactor</span>

The integral molten salt reactor (IMSR) is a nuclear power plant design targeted at developing a commercial product for the small modular reactor (SMR) market. It employs molten salt reactor technology which is being developed by the Canadian company Terrestrial Energy.

<span class="mw-page-title-main">ThorCon nuclear reactor</span> Proposed nuclear power plant design

The Thorcon nuclear reactor is a design of a molten salt reactor with a graphite moderator, proposed by the US-based Thorcon company. These nuclear reactors are designed as part of a floating power plant, to be manufactured on an assembly line in a shipyard, and to be delivered via barge to any ocean or major waterway shoreline, similar to the US's MH-1A from 1968 and the Russian Akademik Lomonosov operating since 2020. The reactors are to be delivered as a sealed unit and never opened on site. All reactor maintenance and fuel processing is done at an off-site location. As of 2022, no reactor of this type has been built. A prototype of 500Mw (TMSR-500) output should be activated in Indonesia by 2029.

<span class="mw-page-title-main">Stable salt reactor</span>

The Stable Salt Reactor (SSR) is a nuclear reactor design under development by Moltex Energy Canada Inc. and its subsidiary Moltex Energy USA LLC, based in Canada, the United States, and the United Kingdom, as well as MoltexFLEX Ltd., based in the United Kingdom.

References

  1. Mortensen, Cecilie Als (2 September 2022). "Jagter kæmpe millionbeløb: Dansk firma vil udvikle fremtidens atomkraft". Finans (in Danish). Retrieved 13 November 2022.
  2. "Advances in Small Modular Reactor Technology Developments". International Atomic Energy Agency. Published August 2016. Retrieved 2017-02-07
  3. 1 2 3 Waldrop, M. Mitchell (22 February 2019). "Nuclear goes retro — with a much greener outlook". Knowable Magazine. doi: 10.1146/knowable-022219-2 . S2CID   186586892.
  4. "Dansk reaktor brænder farligt atomaffald". DR (in Danish). 20 August 2015. Retrieved 17 June 2021.
  5. "Seaborg Technologies". Seaborg. Retrieved 17 November 2019.
  6. 1 2 3 4 5 Blain, Loz (15 June 2021). "Mass-produced floating nuclear reactors use super-safe molten salt fuel". New Atlas. Retrieved 17 June 2021.
  7. "Press Release | Seaborg | Fuel Type LEU". Seaborg. Retrieved 27 August 2024.
  8. 1 2 "OUR TECHNOLOGY". Seaborg. Retrieved 11 August 2023.