Second solar spectrum

Last updated
A visualization of the visible part of the solar spectrum (left) and second solar spectrum at the solar limb (right). The intensity spectrum is coloured to mimic a spectrograph observation, while the linear polarization is proportional to the brightness. Second Solar Spectrum.png
A visualization of the visible part of the solar spectrum (left) and second solar spectrum at the solar limb (right). The intensity spectrum is coloured to mimic a spectrograph observation, while the linear polarization is proportional to the brightness.

The second solar spectrum is an electromagnetic spectrum of the Sun that shows the degree of linear polarization. The term was coined by V. V. Ivanov in 1991. The polarization is at a maximum close to the limb (edge) of the Sun, thus the best place to observe such a spectrum is from just inside the limb. [1] It is also possible to get polarized light from outside the limb, but since this is much dimmer compared to the disk of the Sun, it is very easily polluted by scattered light.

The second solar spectrum differs significantly from the solar spectrum determined by the intensity of light. [1] Large effects come around the Ca II K and H line. These have broad effects 200 Å wide and show a sign reversal at their centers. [1] Molecular lines with stronger polarization than the background due to MgH and C2 are common. [1] Rare-earth elements stand out far more than expected from the intensity spectrum. [1]

Other odd lines include Li I at 6708 Å which has 0.005% more polarization at its peak, but is almost unobservable in the intensity spectrum. The Ba II 4554 Å appears as a triplet in the second solar spectrum. This is due to differing isotopes and hyperfine structure. [1]

Two lines at 5896 Å 4934 Å being the D1 lines of sodium and barium were predicted not to be polarized, but nevertheless are present in this spectrum. [1]

Continuum

The continuum in the spectrum is the light with wavelengths between the lines. Polarization in the continuum is due to Rayleigh scattering by neutral hydrogen atoms (H I) and Thomson scattering by free electrons. Most of the opacity in the sun is due to the hydride ion, H which however does not alter polarization. [2] In 1950 Subrahmanyan Chandrasekhar came up with a solution for the degree of polarization due to scattering, and predicted 11.7% polarization at the limb of the Sun. But nowhere near this level is observed. What happens at the limb is that there is a forest of spicules poking out from the edge, so it is not possible to get parallel to such a rough surface. [2]

For most of the solar disk the degree of linear polarization of the continuum is under 0.1%, but it rises to 1% at the limb. The polarization also depends strongly on the wavelength, and for near ultraviolet 3000 Å the light near the limb is 100 times more polarized than red light at 7000 Å. [2] At the limit of the Balmer series a change happens where at shorter wavelengths more bound-bound Balmer series transitions cause more opacity. This extra opacity drops the polarization degree by a factor of two near 3746 Å. [2]

Related Research Articles

Light Electromagnetic radiation in or near visible spectrum

Light or visible light is electromagnetic radiation within the portion of the electromagnetic spectrum that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometers (nm), or 4.00 × 10−7 to 7.00 × 10−7 m, between the infrared and the ultraviolet. This wavelength means a frequency range of roughly 430–750 terahertz (THz).

Rayleigh scattering The scattering of electromagnetic radiation by particles smaller than the radiations wavelength

Rayleigh scattering, named after the nineteenth-century British physicist Lord Rayleigh, is the predominantly elastic scattering of light or other electromagnetic radiation by particles much smaller than the wavelength of the radiation. For light frequencies well below the resonance frequency of the scattering particle, the amount of scattering is inversely proportional to the fourth power of the wavelength.

Polarization (waves) Property of waves that can oscillate with more than one orientation

Polarization is a property applying to transverse waves that specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves in solids.

Raman spectroscopy

Raman spectroscopy ; is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.

Circular dichroism (CD) is dichroism involving circularly polarized light, i.e., the differential absorption of left- and right-handed light. Left-hand circular (LHC) and right-hand circular (RHC) polarized light represent two possible spin angular momentum states for a photon, and so circular dichroism is also referred to as dichroism for spin angular momentum. This phenomenon was discovered by Jean-Baptiste Biot, Augustin Fresnel, and Aimé Cotton in the first half of the 19th century. Circular dichroism and circular birefringence are manifestations of optical activity. It is exhibited in the absorption bands of optically active chiral molecules. CD spectroscopy has a wide range of applications in many different fields. Most notably, UV CD is used to investigate the secondary structure of proteins. UV/Vis CD is used to investigate charge-transfer transitions. Near-infrared CD is used to investigate geometric and electronic structure by probing metal d→d transitions. Vibrational circular dichroism, which uses light from the infrared energy region, is used for structural studies of small organic molecules, and most recently proteins and DNA.

Sunrise

Sunrise is the moment when the upper limb of the Sun appears on the horizon in the morning. The term can also refer to the entire process of the solar disk crossing the horizon and its accompanying atmospheric effects.

Sunset

Sunset, also known as sundown, is the daily disappearance of the Sun below the horizon due to Earth's rotation. As viewed from the Equator, the equinox Sun sets exactly due west in both Spring and Autumn. As viewed from the middle latitudes, the local summer Sun sets to the northwest for the Northern Hemisphere, but to the southwest for the Southern Hemisphere.

The Balmer series, or Balmer lines in atomic physics, is one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empirical equation discovered by Johann Balmer in 1885.

In physics and chemistry, the Lyman series is a hydrogen spectral series of transitions and resulting ultraviolet emission lines of the hydrogen atom as an electron goes from n ≥ 2 to n = 1, the lowest energy level of the electron. The transitions are named sequentially by Greek letters: from n = 2 to n = 1 is called Lyman-alpha, 3 to 1 is Lyman-beta, 4 to 1 is Lyman-gamma, and so on. The series is named after its discoverer, Theodore Lyman. The greater the difference in the principal quantum numbers, the higher the energy of the electromagnetic emission.

Raman scattering

Raman scattering or the Raman effect is the inelastic scattering of photons by matter, meaning that there is an exchange of energy and a change in the light's direction. Typically this involves vibrational energy being gained by a molecule as incident photons from a visible laser are shifted to lower energy. This is called normal Stokes Raman scattering. The effect is exploited by chemists and physicists to gain information about materials for a variety of purposes by performing various forms of Raman spectroscopy. Many other variants of Raman spectroscopy allow rotational energy to be examined and electronic energy levels may be examined if an X-ray source is used in addition to other possibilities. More complex techniques involving pulsed lasers, multiple laser beams and so on are known.

Optical filter

An optical filter is a device that selectively transmits light of different wavelengths, usually implemented as a glass plane or plastic device in the optical path, which are either dyed in the bulk or have interference coatings. The optical properties of filters are completely described by their frequency response, which specifies how the magnitude and phase of each frequency component of an incoming signal is modified by the filter.

Limb darkening

Limb darkening is an optical effect seen in stars, where the central part of the disk appears brighter than the edge, or limb. Its understanding offered early solar astronomers an opportunity to construct models with such gradients. This encouraged the development of the theory of radiative transfer.

Resonance Raman spectroscopy is a Raman spectroscopy technique in which the incident photon energy is close in energy to an electronic transition of a compound or material under examination. The frequency coincidence can lead to greatly enhanced intensity of the Raman scattering, which facilitates the study of chemical compounds present at low concentrations.

Polarization is an important phenomenon in astronomy.

Polarizer Optical filter device

A polarizer or polariser is an optical filter that lets light waves of a specific polarization pass through while blocking light waves of other polarizations. It can filter a beam of light of undefined or mixed polarization into a beam of well-defined polarization, that is polarized light. The common types of polarizers are linear polarizers and circular polarizers. Polarizers are used in many optical techniques and instruments, and polarizing filters find applications in photography and LCD technology. Polarizers can also be made for other types of electromagnetic waves besides light, such as radio waves, microwaves, and X-rays.

Sky brightness

Sky brightness refers to the visual perception of the sky and how it scatters and diffuses light. The fact that the sky is not completely dark at night is easily visible. If light sources were removed from the night sky, only direct starlight would be visible.

A vector magnetograph is a type of imaging telescope that can estimate the 3-D vector of the magnetic field on a distant body with a resolved line spectrum. Magnetographs are useful for studying the Sun because the surface magnetic field is important to the creation and maintenance of the solar corona, and gives rise to the phenomena of solar flares and space weather.

Rayleigh sky model

The Rayleigh sky model describes the observed polarization pattern of the daytime sky. Within the atmosphere Rayleigh scattering of light from air molecules, water, dust, and aerosols causes the sky's light to have a defined polarization pattern. The same elastic scattering processes cause the sky to be blue. The polarization is characterized at each wavelength by its degree of polarization, and orientation.

Starlight

Starlight is the light emitted by stars. It typically refers to visible electromagnetic radiation from stars other than the Sun, observable from Earth at night, although a component of starlight is observable from Earth during daytime.

Astronomical filter

An astronomical filter is a telescope accessory consisting of an optical filter used by amateur astronomers to simply improve the details of celestial objects, either for viewing or for photography. Research astronomers, on the other hand, use various band-pass filters for photometry on telescopes, in order to obtain measurements which reveal objects' astrophysical properties, such as stellar classification and placement of a celestial body on its Wien curve.

References

  1. 1 2 3 4 5 6 7 Stenflo, Jan O. (6 August 2010). "Unsolved problems in solar polarization" (PDF). Retrieved 20 January 2015.
  2. 1 2 3 4 Stenflo, Jan O. (29 March 2006). "Polarization at the Extreme Limb of the Sun and the Role of Eclipse Observations" (PDF). pp. 1–14. Retrieved 20 January 2015.