Segre's theorem

Last updated
to the definition of a finite oval:
t
{\displaystyle t}
tangent,
s
1
,
.
.
.
s
n
{\displaystyle s_{1},...s_{n}}
secants,
n
{\displaystyle n}
is the order of the projective plane (number of points on a line -1) Oval-def-fin.svg
to the definition of a finite oval: tangent, secants, is the order of the projective plane (number of points on a line -1)

In projective geometry, Segre's theorem, named after the Italian mathematician Beniamino Segre, is the statement:

Contents

This statement was assumed 1949 by the two Finnish mathematicians G. Järnefelt and P. Kustaanheimo and its proof was published in 1955 by B. Segre.

A finite pappian projective plane can be imagined as the projective closure of the real plane (by a line at infinity), where the real numbers are replaced by a finite field K. Odd order means that |K| = n is odd. An oval is a curve similar to a circle (see definition below): any line meets it in at most 2 points and through any point of it there is exactly one tangent. The standard examples are the nondegenerate projective conic sections.

In pappian projective planes of even order greater than four there are ovals which are not conics. In an infinite plane there exist ovals, which are not conics. In the real plane one just glues a half of a circle and a suitable ellipse smoothly.

The proof of Segre's theorem, shown below, uses the 3-point version of Pascal's theorem and a property of a finite field of odd order, namely, that the product of all the nonzero elements equals -1.

Definition of an oval

(1) Any line meets in at most two points.

If the line is an exterior (or passing) line; in case a tangent line and if the line is a secant line.

(2) For any point there exists exactly one tangent at P, i.e., .

For finite planes (i.e. the set of points is finite) we have a more convenient characterization:

Pascal's 3-point version

for the proof
g
[?]
{\displaystyle g_{\infty }}
is the tangent at
P
3
{\displaystyle P_{3}} Pascal-3p.svg
for the proof is the tangent at
Theorem

Let be an oval in a pappian projective plane of characteristic .
is a nondegenerate conic if and only if statement (P3) holds:

(P3): Let be any triangle on and the tangent at point to , then the points
are collinear. [1]
to the proof of the 3-point Pascal theorem Pascal-3p-proof.svg
to the proof of the 3-point Pascal theorem
Proof

Let the projective plane be coordinatized inhomogeneously over a field such that is the tangent at , the x-axis is the tangent at the point and contains the point . Furthermore, we set (s. image)
The oval can be described by a function such that:

The tangent at point will be described using a function such that its equation is

Hence (s. image)

and

I: if is a non degenerate conic we have and and one calculates easily that are collinear.

II: If is an oval with property (P3), the slope of the line is equal to the slope of the line , that means:

and hence
(i): for all .

With one gets

(ii): and from we get
(iii):

(i) and (ii) yield

(iv): and with (iii) at least we get
(v): for all .

A consequence of (ii) and (v) is

.

Hence is a nondegenerate conic.

Remark: Property (P3) is fulfilled for any oval in a pappian projective plane of characteristic 2 with a nucleus (all tangents meet at the nucleus). Hence in this case (P3) is also true for non-conic ovals. [2]

Segre's theorem and its proof

Theorem

Any oval in a finite pappian projective plane of odd order is a nondegenerate conic section.

3-point version of Pascal's theorem, for the proof we assume
g
[?]
=
P
2
P
3
-
{\displaystyle g_{\infty }={\overline {P_{2}P_{3}}}} Pascal-3p.svg
3-point version of Pascal's theorem, for the proof we assume
Segre's theorem: to its proof Segre-proof.svg
Segre's theorem: to its proof
Proof
[3]

For the proof we show that the oval has property (P3) of the 3-point version of Pascal's theorem.

Let be any triangle on and defined as described in (P3). The pappian plane will be coordinatized inhomogeneously over a finite field , such that and is the common point of the tangents at and . The oval can be described using a bijective function :

For a point , the expression is the slope of the secant Because both the functions and are bijections from to , and a bijection from onto , where is the slope of the tangent at , for we get

(Remark: For we have: )
Hence

Because the slopes of line and tangent both are , it follows that . This is true for any triangle .

So: (P3) of the 3-point Pascal theorem holds and the oval is a non degenerate conic.

Related Research Articles

In mathematics, specifically commutative algebra, Hilbert's basis theorem says that a polynomial ring over a Noetherian ring is Noetherian.

Lie algebra vector space with an alternating binary operation satisfying the Jacobi identity.

In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. The vector space together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative.

Parabola Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several other superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

Algebraic curve Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.

Reductive group linear algebraic group over a field such that, after base change to its algebraic closure, every smooth connected solvable normal subgroup is trivial

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and semisimple algebraic groups are reductive.

Oval (projective plane) Circle-like pointset in a geometric plane

In projective geometry an oval is a circle-like pointset (curve) in a plane that is defined by incidence properties. The standard examples are the nondegenerate conics. However, a conic is only defined in a pappian plane, whereas an oval may exist in any type of projective plane. In the literature, there are many criteria which imply that an oval is a conic, but there are many examples, both infinite and finite, of ovals in pappian planes which are not conics.

Ovoid (projective geometry) sphere-like surface in projective space of dimension d ≥ 3

In projective geometry an ovoid is a sphere like pointset (surface) in a projective space of dimension d ≥ 3. Simple examples in a real projective space are hyperspheres (quadrics). The essential geometric properties of an ovoid are:

  1. Any line intersects in at most 2 points,
  2. The tangents at a point cover a hyperplane, and
  3. contains no lines.

In mathematics, a Minkowski plane is one of the Benz planes.

In algebraic geometry, the normal cone CXY of a subscheme X of a scheme Y is a scheme analogous to the normal bundle or tubular neighborhood in differential geometry.

In commutative algebra, an element b of a commutative ring B is said to be integral overA, a subring of B, if there are n ≥ 1 and aj in A such that

Conic section Curve obtained by intersecting a cone and a plane

In mathematics, a conic section is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though historically it was sometimes called a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and they are isomorphisms in the category of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the weaker condition of a rational map and birational maps are frequently used as well.

In Euclidean and projective geometry, just as two (distinct) points determine a line, five points determine a conic. There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.

Laguerre plane

In mathematics, a Laguerre plane is one of the Benz planes: the Möbius plane, Laguerre plane and Minkowski plane, named after the French mathematician Edmond Nicolas Laguerre.

In mathematics, a Möbius plane is one of the Benz planes: Möbius plane, Laguerre plane and Minkowski plane. The classical example is based on the geometry of lines and circles in the real affine plane.

In mathematics, a quadratic set is a set of points in a projective space that bears the same essential incidence properties as a quadric.

In algebraic geometry, the main theorem of elimination theory states that every projective scheme is proper. A version of this theorem predates the existence of scheme theory. It can be stated, proved, and applied in the following more classical setting. Let k be a field, denote by the n-dimensional projective space over k. The main theorem of elimination theory is the statement that for any n and any algebraic variety V defined over k, the projection map sends Zariski-closed subsets to Zariski-closed subsets.

Steiner conic

The Steiner conic or more precisely Steiner's generation of a conic, named after the Swiss mathematician Jakob Steiner, is an alternative method to define a non-degenerate projective conic section in a projective plane over a field.

Qvists theorem

In projective geometry Qvist's theorem, named after the Finnish mathematician Bertil Qvist, is a statement on ovals in finite projective planes. Standard examples of ovals are non-degenerate (projective) conic sections. The theorem gives an answer to the question How many tangents to an oval can pass through a point in a finite projective plane? The answer depends essentially upon the order of the plane.

References

Sources