The self-accelerating decomposition temperature (SADT) is the lowest temperature at which an organic peroxide in a typical vessel or shipping package will undergo a self-accelerating decomposition within one week. [1] The SADT is the point at which the heat evolution from the decomposition reaction and the heat removal rate from the package of interest become unbalanced. When the heat removal is too low, the temperature in the package increases and the rate of decomposition increases in an uncontrollable manner. The result is therefore dependent on the formulation and the package characteristics. [2] [3]
A self-accelerating decomposition occurs when the rate of peroxide decomposition is sufficient to generate heat at a faster rate than it can be dissipated to the environment. Temperature is the main factor in determining the decomposition rate, although the size of the package is also important since its dimensions will determine the ability to dissipate heat to the environment.
All peroxides contain an oxygen-oxygen bond that, on heating, can break apart homolytically to generate two radicals. As mentioned previously, this decomposition also generates heat. But the stability of the oxygen-oxygen bond is dependent on what else is present in the molecule. Some peroxides, due to their chemical make-up, are very unstable and need to be refrigerated to avoid a self-accelerating decomposition. Others, particularly those used for crosslinking purposes, are much more stable and can be stored at normal ambient temperatures without risk of self-acceleration. Due to the large variations in the stabilities of peroxides, each is tested to determine the safe maximum temperature for which the peroxide may be stored, shipped, and handled. The result of this test is the self-accelerating decomposition temperature (SADT).
Although a number of organic peroxides can safely be stored at room temperature, most require some form of temperature control. For long storage periods, the organic peroxide is usually kept at a lower temperature than the maximum safe storage temperature as determined by the SADT. [4]
The SADT for an organic peroxide formulation is usually lower for more concentrated formulations. Dilution with a compatible, high boiling point diluent will usually increase the SADT since the peroxide is dilute and the diluent can absorb much of the heat minimizing the increase in temperature. Also, for an organic peroxide formulation, larger packages generally have a lower SADT because of the poorer heat transfer of the larger package due to lower surface area to volume ratio. Most organic peroxides react to some extent with their decomposition products during thermal decomposition. This often increases the rate since the decomposition proceeds more rapidly as the decomposition products are generated.
The SADT measurement is made as follows:
As an alternative to the oven test the SADT for larger packages can be determined by substituting a Dewar flask for the package. The heat transfer of the Dewar flask can be matched to the heat transfer of a larger package size. This test is called the Heat Accumulation Storage Test (HAST).
Some mixtures containing peroxides and polymerizable monomers may also exhibit SADTs. For example, mixtures of vinyltrimethoxysilane, peroxides and stabilizers are used commercially for cross-linking polyethylene to make PEX pipe. These mixtures are typically liquid solutions that are shipped to where they are used to graft alkoxysilane groups to polyethylene. In such mixtures decomposition of the peroxide can initiate exothermic radical polymerization of the vinyltrimethoxysilane. At low temperature the decomposition rate is slow enough that the stabilizers quench the polymerization before much heat is generated and the container dissipates what heat is produced. At higher temperatures peroxide decomposition is faster, more polymerization occurs to heat the mixture, which in turn increases peroxide decomposition and polymerizes the monomer even faster. The container dissipates heat more slowly in a higher-temperature environment, so at some critical temperature heat is generated by polymerization faster than the container can dissipate it and the reaction self-accelerates. Thus such a mixture has a SADT that depends on container size exactly as in the case of a pure organic peroxide.
When thermal decomposition occurs some organic peroxide formulations release a considerable amount of gases and/or mists. Some, but not all, of these gases may be flammable. For example, carbon dioxide is a common, gaseous decomposition product for diacyl peroxides and peresters that is not flammable.
The decomposition may include small organic fragments such as methane or acetone which are flammable. When flammable gases or mists are released as part of the decomposition there is always the potential danger of a fire or vapor phase explosion. Therefore, the risk of vapor phase explosion should be kept in mind when designing storage structures. These types of materials may be released at low rates during storage and in quite high rates in the event of an upset due to failure to control storage temperature or in the event of a fire in the storage area.
It is the ease of splitting the peroxy group to give two free radicals that makes organic peroxides so useful. However, the presence of energetic free radicals during decomposition, particularly in hot gases or mists, can cause auto-ignition to occur at a lower temperature than would otherwise be normal for a similar chemical structure without the peroxy functional group. Organic peroxides do not usually produce oxygen as part of the decomposition process, so there is little risk of enhanced burning rates due to oxygen enrichment. This is unlike the decomposition of hydrogen peroxide and solid oxidizers that can liberate oxygen.
An explosive is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An explosive charge is a measured quantity of explosive material, which may either be composed solely of one ingredient or be a mixture containing at least two substances.
Hydrogen peroxide is a chemical compound with the formula H
2O
2. In its pure form, it is a very pale blue liquid, slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution in water for consumer use, and in higher concentrations for industrial use. Concentrated hydrogen peroxide, or "high-test peroxide", decomposes explosively when heated and has been used as a propellant in rocketry.
Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi.
High-test peroxide (HTP) is a highly concentrated solution of hydrogen peroxide, with the remainder consisting predominantly of water. In contact with a catalyst, it decomposes into a high-temperature mixture of steam and oxygen, with no remaining liquid water. It was used as a propellant of HTP rockets and torpedoes, and has been used for high-performance vernier engines.
meta-Chloroperoxybenzoic acid is a peroxycarboxylic acid. A white solid, it is used widely as an oxidant in organic synthesis. mCPBA is often preferred to other peroxy acids because of its relative ease of handling. mCPBA is a strong oxidizing agent that may cause fire upon contact with flammable material.
Organic peroxides are organic compounds containing the peroxide functional group (ROOR′). If the R′ is hydrogen, the compounds are called hydroperoxides, which are discussed in that article. Peresters are the peroxy analog of esters and have general structure RC(O)OOR. The O−O bond of peroxides easily breaks, producing free radicals of the form RO•. Thus, organic peroxides are useful as initiators for some types of polymerisation, such as the epoxy resins used in glass-reinforced plastics. MEKP and benzoyl peroxide are commonly used for this purpose. However, the same property also means that organic peroxides can either intentionally or unintentionally initiate explosive polymerisation in materials with unsaturated chemical bonds, and this process has been used in explosives. Organic peroxides, like their inorganic counterparts, are powerful bleaching agents.
Piranha solution, also known as piranha etch, is a mixture of sulfuric acid, water, and hydrogen peroxide, used to clean organic residues off substrates. Because the mixture is a strong oxidizing agent, it will decompose most organic matter, and it will also hydroxylate most surfaces, making them highly hydrophilic (water-compatible). This means the solution can also easily dissolve fabric and skin, potentially causing severe damage and chemical burns in case of inadvertent contact.
Autoxidation refers to oxidations brought about by reactions with oxygen at normal temperatures, without the intervention of flame or electric spark. The term is usually used to describe the degradation of organic compounds in air at ambient temperatures. Many common phenomena can be attributed to autoxidation, such as food going rancid, the 'drying' of varnishes and paints, and the perishing of rubber. It is also an important concept in both industrial chemistry and biology. Autoxidation is therefore a fairly broad term and can encompass examples of photooxygenation and catalytic oxidation.
Photodegradation is the alteration of materials by light. Commonly, the term is used loosely to refer to the combined action of sunlight and air, which cause oxidation and hydrolysis. Often photodegradation is intentionally avoided, since it destroys paintings and other artifacts. It is, however, partly responsible for remineralization of biomass and is used intentionally in some disinfection technologies. Photodegradation does not apply to how materials may be aged or degraded via infrared light or heat, but does include degradation in all of the ultraviolet light wavebands.
Silicone rubber is an elastomer composed of silicone—itself a polymer—containing silicon together with carbon, hydrogen, and oxygen. Silicone rubbers are widely used in industry, and there are multiple formulations. Silicone rubbers are often one- or two-part polymers, and may contain fillers to improve properties or reduce cost. Silicone rubber is generally non-reactive, stable, and resistant to extreme environments and temperatures from −55 to 300 °C while still maintaining its useful properties. Due to these properties and its ease of manufacturing and shaping, silicone rubber can be found in a wide variety of products, including voltage line insulators; automotive applications; cooking, baking, and food storage products; apparel such as undergarments, sportswear, and footwear; electronics; medical devices and implants; and in home repair and hardware, in products such as silicone sealants.
The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is an internationally agreed-upon standard managed by the United Nations that was set up to replace the assortment of hazardous material classification and labelling schemes previously used around the world. Core elements of the GHS include standardized hazard testing criteria, universal warning pictograms, and harmonized safety data sheets which provide users of dangerous goods with a host of information. The system acts as a complement to the UN Numbered system of regulated hazardous material transport. Implementation is managed through the UN Secretariat. Although adoption has taken time, as of 2017, the system has been enacted to significant extents in most major countries of the world. This includes the European Union, which has implemented the United Nations' GHS into EU law as the CLP Regulation, and United States Occupational Safety and Health Administration standards.
A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.
Spontaneous combustion or spontaneous ignition is a type of combustion which occurs by self-heating, followed by thermal runaway and finally, autoignition.
Polymer stabilizers are chemical additives which may be added to polymeric materials, such as plastics and rubbers, to inhibit or retard their degradation. Common polymer degradation processes include oxidation, UV-damage, thermal degradation, ozonolysis, combinations thereof such as photo-oxidation, as well as reactions with catalyst residues, dyes, or impurities. All of these degrade the polymer at a chemical level, via chain scission, uncontrolled recombination and cross-linking, which adversely affects many key properties such as strength, malleability, appearance and colour.
Accelerated photo-ageing of polymers in SEPAP units is the controlled polymer degradation and polymer coating degradation under lab or natural conditions.
In polymer chemistry photo-oxidation is the degradation of a polymer surface due to the combined action of light and oxygen. It is the most significant factor in the weathering of plastics. Photo-oxidation causes the polymer chains to break, resulting in the material becoming increasingly brittle. This leads to mechanical failure and, at an advanced stage, the formation of microplastics. In textiles the process is called phototendering.
Fire-safe polymers are polymers that are resistant to degradation at high temperatures. There is need for fire-resistant polymers in the construction of small, enclosed spaces such as skyscrapers, boats, and airplane cabins. In these tight spaces, ability to escape in the event of a fire is compromised, increasing fire risk. In fact, some studies report that about 20% of victims of airplane crashes are killed not by the crash itself but by ensuing fires. Fire-safe polymers also find application as adhesives in aerospace materials, insulation for electronics, and in military materials such as canvas tenting.
The terms active packaging, intelligent packaging, smart packaging and connected packaging refer to packaging systems used with foods, pharmaceuticals, and several other types of products. They help extend shelf life, monitor freshness, display information on quality, improve safety, and improve convenience.
Oxygen compatibility is the issue of compatibility of materials for service in high concentrations of oxygen. It is a critical issue in space, aircraft, medical, underwater diving and industrial applications. Aspects include effects of increased oxygen concentration on the ignition and burning of materials and components exposed to these concentrations in service.
tert-Butyl peroxybenzoate (TBPB) a chemical compound from the group of peresters (compounds containing the general structure R1-C(O)OO-R2) which contains a phenyl group as R1 and a tert-butyl group as R2. It is often used as a radical initiator in polymerization reactions, such as the production of LDPE from ethylene, and for crosslinking, such as for unsaturated polyester resins.