Semiorthogonal decomposition

Last updated

In mathematics, a semiorthogonal decomposition is a way to divide a triangulated category into simpler pieces. One way to produce a semiorthogonal decomposition is from an exceptional collection, a special sequence of objects in a triangulated category. For an algebraic variety X, it has been fruitful to study semiorthogonal decompositions of the bounded derived category of coherent sheaves, .

Contents

Semiorthogonal decomposition

Alexei Bondal and Mikhail Kapranov (1989) defined a semiorthogonal decomposition of a triangulated category to be a sequence of strictly full triangulated subcategories such that: [1]

The notation is used for a semiorthogonal decomposition.

Having a semiorthogonal decomposition implies that every object of has a canonical "filtration" whose graded pieces are (successively) in the subcategories . That is, for each object T of , there is a sequence

of morphisms in such that the cone of is in , for each i. Moreover, this sequence is unique up to a unique isomorphism. [2]

One can also consider "orthogonal" decompositions of a triangulated category, by requiring that there are no morphisms from to for any . However, that property is too strong for most purposes. For example, for an (irreducible) smooth projective variety X over a field, the bounded derived category of coherent sheaves never has a nontrivial orthogonal decomposition, whereas it may have a semiorthogonal decomposition, by the examples below.

A semiorthogonal decomposition of a triangulated category may be considered as analogous to a finite filtration of an abelian group. Alternatively, one may consider a semiorthogonal decomposition as closer to a split exact sequence, because the exact sequence of triangulated categories is split by the subcategory , mapping isomorphically to .

Using that observation, a semiorthogonal decomposition implies a direct sum splitting of Grothendieck groups:

For example, when is the bounded derived category of coherent sheaves on a smooth projective variety X, can be identified with the Grothendieck group of algebraic vector bundles on X. In this geometric situation, using that comes from a dg-category, a semiorthogonal decomposition actually gives a splitting of all the algebraic K-groups of X:

for all i. [3]

Admissible subcategory

One way to produce a semiorthogonal decomposition is from an admissible subcategory. By definition, a full triangulated subcategory is left admissible if the inclusion functor has a left adjoint functor, written . Likewise, is right admissible if the inclusion has a right adjoint, written , and it is admissible if it is both left and right admissible.

A right admissible subcategory determines a semiorthogonal decomposition

,

where

is the right orthogonal of in . [2] Conversely, every semiorthogonal decomposition arises in this way, in the sense that is right admissible and . Likewise, for any semiorthogonal decomposition , the subcategory is left admissible, and , where

is the left orthogonal of .

If is the bounded derived category of a smooth projective variety over a field k, then every left or right admissible subcategory of is in fact admissible. [4] By results of Bondal and Michel Van den Bergh, this holds more generally for any regular proper triangulated category that is idempotent-complete. [5]

Moreover, for a regular proper idempotent-complete triangulated category , a full triangulated subcategory is admissible if and only if it is regular and idempotent-complete. These properties are intrinsic to the subcategory. [6] For example, for X a smooth projective variety and Y a subvariety not equal to X, the subcategory of of objects supported on Y is not admissible.

Exceptional collection

Let k be a field, and let be a k-linear triangulated category. An object E of is called exceptional if Hom(E,E) = k and Hom(E,E[t]) = 0 for all nonzero integers t, where [t] is the shift functor in . (In the derived category of a smooth complex projective variety X, the first-order deformation space of an object E is , and so an exceptional object is in particular rigid. It follows, for example, that there are at most countably many exceptional objects in , up to isomorphism. That helps to explain the name.)

The triangulated subcategory generated by an exceptional object E is equivalent to the derived category of finite-dimensional k-vector spaces, the simplest triangulated category in this context. (For example, every object of that subcategory is isomorphic to a finite direct sum of shifts of E.)

Alexei Gorodentsev and Alexei Rudakov (1987) defined an exceptional collection to be a sequence of exceptional objects such that for all i < j and all integers t. (That is, there are "no morphisms from right to left".) In a proper triangulated category over k, such as the bounded derived category of coherent sheaves on a smooth projective variety, every exceptional collection generates an admissible subcategory, and so it determines a semiorthogonal decomposition:

where , and denotes the full triangulated subcategory generated by the object . [7] An exceptional collection is called full if the subcategory is zero. (Thus a full exceptional collection breaks the whole triangulated category up into finitely many copies of .)

In particular, if X is a smooth projective variety such that has a full exceptional collection , then the Grothendieck group of algebraic vector bundles on X is the free abelian group on the classes of these objects:

A smooth complex projective variety X with a full exceptional collection must have trivial Hodge theory, in the sense that for all ; moreover, the cycle class map must be an isomorphism. [8]

Examples

The original example of a full exceptional collection was discovered by Alexander Beilinson (1978): the derived category of projective space over a field has the full exceptional collection

,

where O(j) for integers j are the line bundles on projective space. [9] Full exceptional collections have also been constructed on all smooth projective toric varieties, del Pezzo surfaces, many projective homogeneous varieties, and some other Fano varieties. [10]

More generally, if X is a smooth projective variety of positive dimension such that the coherent sheaf cohomology groups are zero for i > 0, then the object in is exceptional, and so it induces a nontrivial semiorthogonal decomposition . This applies to every Fano variety over a field of characteristic zero, for example. It also applies to some other varieties, such as Enriques surfaces and some surfaces of general type.

A source of examples is Orlov's blowup formula concerning the blowup of a scheme at a codimension locally complete intersection subscheme with exceptional locus . There is a semiorthogonal decomposition where is the functor with is the natural map. [11]

While these examples encompass a large number of well-studied derived categories, many naturally occurring triangulated categories are "indecomposable". In particular, for a smooth projective variety X whose canonical bundle is basepoint-free, every semiorthogonal decomposition is trivial in the sense that or must be zero. [12] For example, this applies to every variety which is Calabi–Yau in the sense that its canonical bundle is trivial.

See also

Notes

  1. Huybrechts 2006, Definition 1.59.
  2. 1 2 Bondal & Kapranov 1990, Proposition 1.5.
  3. Orlov 2016, Section 1.2.
  4. Kuznetsov 2007, Lemmas 2.10, 2.11, and 2.12.
  5. Orlov 2016, Theorem 3.16.
  6. Orlov 2016, Propositions 3.17 and 3.20.
  7. Huybrechts 2006, Lemma 1.58.
  8. Marcolli & Tabuada 2015, Proposition 1.9.
  9. Huybrechts 2006, Corollary 8.29.
  10. Kuznetsov 2014, Section 2.2.
  11. Orlov, D O (1993-02-28). "PROJECTIVE BUNDLES, MONOIDAL TRANSFORMATIONS, AND DERIVED CATEGORIES OF COHERENT SHEAVES". Russian Academy of Sciences. Izvestiya Mathematics. 41 (1): 133–141. doi:10.1070/im1993v041n01abeh002182. ISSN   1064-5632.
  12. Kuznetsov 2014, Section 2.5.

Related Research Articles

In mathematics, a direct limit is a way to construct a object from many objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category. The way they are put together is specified by a system of homomorphisms between those smaller objects. The direct limit of the objects , where ranges over some directed set , is denoted by . This notation suppresses the system of homomorphisms; however, the limit depends on the system of homomorphisms.

<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

<span class="mw-page-title-main">Projection (linear algebra)</span> Idempotent linear transformation from a vector space to itself

In linear algebra and functional analysis, a projection is a linear transformation from a vector space to itself such that . That is, whenever is applied twice to any vector, it gives the same result as if it were applied once. It leaves its image unchanged. This definition of "projection" formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on a geometrical object by examining the effect of the projection on points in the object.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

In linear algebra and functional analysis, the partial trace is a generalization of the trace. Whereas the trace is a scalar valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics, including consistent histories and the relative state interpretation.

In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.

In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology.

In the branch of mathematics called homological algebra, a t-structure is a way to axiomatize the properties of an abelian subcategory of a derived category. A t-structure on consists of two subcategories of a triangulated category or stable infinity category which abstract the idea of complexes whose cohomology vanishes in positive, respectively negative, degrees. There can be many distinct t-structures on the same category, and the interplay between these structures has implications for algebra and geometry. The notion of a t-structure arose in the work of Beilinson, Bernstein, Deligne, and Gabber on perverse sheaves.

In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In mathematics, Hochschild homology (and cohomology) is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

In the study of differential equations, the Loewy decomposition breaks every linear ordinary differential equation (ODE) into what are called largest completely reducible components. It was introduced by Alfred Loewy.

In the mathematical field of group theory, an Artin transfer is a certain homomorphism from an arbitrary finite or infinite group to the commutator quotient group of a subgroup of finite index. Originally, such mappings arose as group theoretic counterparts of class extension homomorphisms of abelian extensions of algebraic number fields by applying Artin's reciprocity maps to ideal class groups and analyzing the resulting homomorphisms between quotients of Galois groups. However, independently of number theoretic applications, a partial order on the kernels and targets of Artin transfers has recently turned out to be compatible with parent-descendant relations between finite p-groups, which can be visualized in descendant trees. Therefore, Artin transfers provide a valuable tool for the classification of finite p-groups and for searching and identifying particular groups in descendant trees by looking for patterns defined by the kernels and targets of Artin transfers. These strategies of pattern recognition are useful in purely group theoretic context, as well as for applications in algebraic number theory concerning Galois groups of higher p-class fields and Hilbert p-class field towers.

This article summarizes several identities in exterior calculus, a mathematical notation used in differential geometry.

In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.

In mathematics, and especially algebraic geometry, a Bridgeland stability condition, defined by Tom Bridgeland, is an algebro-geometric stability condition defined on elements of a triangulated category. The case of original interest and particular importance is when this triangulated category is the derived category of coherent sheaves on a Calabi–Yau manifold, and this situation has fundamental links to string theory and the study of D-branes.

References