Sequence analysis of synthetic polymers

Last updated

The methods for sequence analysis of synthetic polymers differ from the sequence analysis of biopolymers (e. g. DNA or proteins). Synthetic polymers are produced by chain-growth or step-growth polymerization and show thereby polydispersity, whereas biopolymers are synthesized by complex template-based mechanisms and are sequence-defined and monodisperse. Synthetic polymers are a mixture of macromolecules of different length and sequence and are analysed via statistical measures (e. g. the degree of polymerization, comonomer composition or dyad and triad fractions). [1]

Contents

NMR-based sequencing

Nuclear magnetic resonance (NMR) spectroscopy is known as the most widely applied and “one of the most powerful techniques” for the sequence analysis of synthetic copolymers. [1] [2] ⁠ NMR spectroscopy allows determination of the relative abundance of comonomer sequences at the level of dyads and in cases of small repeat units even triads or more. It also allows the detection and quantification of chain defects and chain end groups, cyclic oligomers and by-products. [2] ⁠ However, limitations of NMR spectroscopy are that it cannot, so far, provide information about the sequence distribution along the chain, like gradients, clusters or a long-range order. [1]

Example: Copolymer of PET and PEN

Monitoring the relative abundance of comonomer sequences is a common technique and is used, for example, to observe the progress of transesterification reactions between polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) in their blends.

During such a transesterification reaction, three resonances representing four diads can be distinguished via 1H NMR spectroscopy by different chemical shifts of the oxyethylene units: The diads -terephthalate-oxyethylene-terephthalate- (TET) and -naphthalate-oxyethylene-naphthalate- (NEN), which are also present in the homopolymers polyethylene naphthalate und polyethylene terephthalate, as well as the (indistinguishable) diads -terephthalate-oxyethylene-naphthalate- (TEN) and -naphthalate-oxyethylene-terephthalate- (NET), which are exclusively present in the copolymer. In the spectrum of a 1:1 physical PET/PEN mixture, only the resonances corresponding to the diads TET and NEN are present at 4.90 and 5.00 ppm, respectively. Once a transesterification reaction occurs, a new resonance at 4.95 ppm emerges that increases in intensity with the reaction time, corresponding to the TEN / NET sequences. [2]

The example of polyethylene naphthalate and polyethylene terephthalate is relatively simple, as only the aromatic part of the polymers differ (naphthalate vs. terephthalate). In a blend of polyethylene naphthalate and polytrimethylene terephthalate, already six resonances can be distinguished, since both, oxyethylene and oxypropylene, form three resonances. [3] The sequence patterns can become even more complex, when triads can be distinguished spectroscopically. [2] ⁠ The extractable information is limited by the difference in chemical shift and the resonance width. In addition to 1H NMR spectroscopy, also 13C NMR spectroscopy is a common method for the sequencing shown above, which is characterized in particular by a very narrow resonance width.

Deconvolution and assignment of these triad-based resonances allows a quantitative determination of the degree of randomness and the average block length via integration of the distinguishable resonances. In a 1:1 mixture of two linear two-component 1:1 polycondensates (A1B1)n and (A2B2)n (with molecular weight high enough to neglected chain-ends), the following two equations are valid:

[ Ai] = [Bi], wherein (i = 1,2) (1)

[ A1B2 ] = [ A2B1] (2)

Equation 1 states that the molar ratio of all four repeat units is identical and equation 2 states that both types of copolymer are of identical concentration. In this case, the degree of randomness χ is calculated as given by equation 3:

, wherein (i, j = 1, 2) (3)

In the beginning of a transreaction process (e. g. transesterification or transamidation), the degree of randomness χ ≈ 0 as the system comprises a physical mixture of homopolymers or block copolymers. During the transreaction process χ increases up to χ = 1 for a fully random copolymer. If χ > 1 it indicates a tendency of the monomers to form alternating structure, up to χ = 2 for a completely alternating copolymer. [4] ⁠ The degree of randomness χ gives thereby statistical information about the polymer sequence. The calculation can be modified for three-component [5] ⁠ and four-component [6] ⁠ polycondensates.

Application

NMR spectroscopy is used in industrially relevant systems to study the sequence distribution of copolymers or the occurrence of transesterification in polyester blends. A change in sequence distribution can effect the crystallinity, and transesterification can affect the compatibility of two otherwise incompatible polyesters. Depending on their degree of randomness, copolyesters can show different thermal transitions and behaviours. [7]

Other sequencing

Other options besides traditional NMR spectroscopy for sequence analysis are listed here; [8] these include Kerr-effect for characterization of polymer microstructures, MALDI-TOF mass spectrometry, depolymerization (controlled chemical degradation of macromolecules) via chain-end depolymerization (i.e., unzipping) and nanopore analysis (most of such reported studies, however, have focused on poly(ethylene glycol), PEG).

Related Research Articles

In chemistry, a monomer is a molecule that can react together with other monomer molecules to form a larger polymer chain or three-dimensional network in a process called polymerization.

<span class="mw-page-title-main">Polymer</span> Substance composed of macromolecules with repeating structural units

A polymer is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

<span class="mw-page-title-main">Tacticity</span> Relative conformational uniformity of repeating units in a macromolecule

Tacticity is the relative stereochemistry of adjacent chiral centers within a macromolecule. The practical significance of tacticity rests on the effects on the physical properties of the polymer. The regularity of the macromolecular structure influences the degree to which it has rigid, crystalline long range order or flexible, amorphous long range disorder. Precise knowledge of tacticity of a polymer also helps understanding at what temperature a polymer melts, how soluble it is in a solvent and its mechanical properties.

<span class="mw-page-title-main">Polyethylene</span> The most common thermoplastic polymer

Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bottles, etc.). As of 2017, over 100 million tonnes of polyethylene resins are being produced annually, accounting for 34% of the total plastics market.

<span class="mw-page-title-main">Polyethylene terephthalate</span> Polymer

Polyethylene terephthalate (or poly(ethylene terephthalate), PET, PETE, or the obsolete PETP or PET-P), is the most common thermoplastic polymer resin of the polyester family and is used in fibres for clothing, containers for liquids and foods, and thermoforming for manufacturing, and in combination with glass fibre for engineering resins.

<span class="mw-page-title-main">Polythiophene</span>

Polythiophenes (PTs) are polymerized thiophenes, a sulfur heterocycle. The parent PT is an insoluble colored solid with the formula (C4H2S)n. The rings are linked through the 2- and 5-positions. Poly(alkylthiophene)s have alkyl substituents at the 3- or 4-position(s). They are also colored solids, but tend to be soluble in organic solvents.

<span class="mw-page-title-main">Copolymer</span> Polymer derived from more than one species of monomer

In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are sometimes called bipolymers. Those obtained from three and four monomers are called terpolymers and quaterpolymers, respectively. Copolymers can be characterized by a variety of techniques such as NMR spectroscopy and size-exclusion chromatography to determine the molecular size, weight, properties, and composition of the material.

<span class="mw-page-title-main">End group</span> Functional group at the extremity of an oligomer or other macromolecule

End groups are an important aspect of polymer synthesis and characterization. In polymer chemistry, they are functional groups that are at the very ends of a macromolecule or oligomer (IUPAC). In polymer synthesis, like condensation polymerization and free-radical types of polymerization, end-groups are commonly used and can be analyzed by nuclear magnetic resonance (NMR) to determine the average length of the polymer. Other methods for characterization of polymers where end-groups are used are mass spectrometry and vibrational spectrometry, like infrared and raman spectroscopy. These groups are important for the analysis of polymers and for grafting to and from a polymer chain to create a new copolymer. One example of an end group is in the polymer poly(ethylene glycol) diacrylate where the end-groups are circled.

A polyolefin is a type of polymer with the general formula (CH2CHR)n where R is an alkyl group. They are usually derived from a small set of simple olefins (alkenes). Dominant in a commercial sense are polyethylene and polypropylene. More specialized polyolefins include polyisobutylene and polymethylpentene. They are all colorless or white oils or solids. Many copolymers are known, such as polybutene, which derives from a mixture of different butene isomers. The name of each polyolefin indicates the olefin from which it is prepared; for example, polyethylene is derived from ethylene, and polymethylpentene is derived from 4-methyl-1-pentene. Polyolefins are not olefins themselves because the double bond of each olefin monomer is opened in order to form the polymer. Monomers having more than one double bond such as butadiene and isoprene yield polymers that contain double bonds (polybutadiene and polyisoprene) and are usually not considered polyolefins. Polyolefins are the foundations of many chemical industries.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

PBAT is a biodegradable random copolymer, specifically a copolyester of adipic acid, 1,4-butanediol and terephthalic acid. PBAT is produced by many different manufacturers and may be known by the brand names ecoflex, Wango,Ecoworld, Eastar Bio, and Origo-Bi. It is also called poly(butylene adipate-co-terephthalate) and sometimes polybutyrate-adipate-terephthalate or even just "polybutyrate". It is generally marketed as a fully biodegradable alternative to low-density polyethylene, having many similar properties including flexibility and resilience, allowing it to be used for many similar uses such as plastic bags and wraps. It is depicted as a block co-polymer here due to the common synthetic method of first synthesizing two copolymer blocks and then combining them. However, it is important to note that the actual structure of the polymer is a random co-polymer of the blocks shown.

In polymer chemistry, gradient copolymers are copolymers in which the change in monomer composition is gradual from predominantly one species to predominantly the other, unlike with block copolymers, which have an abrupt change in composition, and random copolymers, which have no continuous change in composition . In the gradient copolymer, as a result of the gradual compositional change along the length of the polymer chain less intrachain and interchain repulsion are observed.

<span class="mw-page-title-main">Temperature-responsive polymer</span> Polymer showing drastic changes in physical properties with temperature

Temperature-responsive polymers or thermoresponsive polymers are polymers that exhibit drastic and discontinuous changes in their physical properties with temperature. The term is commonly used when the property concerned is solubility in a given solvent, but it may also be used when other properties are affected. Thermoresponsive polymers belong to the class of stimuli-responsive materials, in contrast to temperature-sensitive materials, which change their properties continuously with environmental conditions. In a stricter sense, thermoresponsive polymers display a miscibility gap in their temperature-composition diagram. Depending on whether the miscibility gap is found at high or low temperatures, either an upper critical solution temperature (UCST) or a lower critical solution temperature (LCST) exists.

<span class="mw-page-title-main">Photo-oxidation of polymers</span>

In polymer chemistry photo-oxidation is the degradation of a polymer surface due to the combined action of light and oxygen. It is the most significant factor in the weathering of plastics. Photo-oxidation causes the polymer chains to break, resulting in the material becoming increasingly brittle. This leads to mechanical failure and, at an advanced stage, the formation of microplastics. In textiles the process is called phototendering.

Polymer characterization is the analytical branch of polymer science.

<span class="mw-page-title-main">Polyfluorene</span> Chemical compound

Polyfluorene is a polymer with formula (C13H8)n, consisting of fluorene units linked in a linear chain — specifically, at carbon atoms 2 and 7 in the standard fluorene numbering. It can also be described as a chain of benzene rings linked in para positions with an extra methylene bridge connecting every pair of rings.

<span class="mw-page-title-main">Cyclohexanedimethanol</span> Chemical compound

Cyclohexanedimethanol (CHDM) is a mixture of isomeric organic compounds with formula C6H10(CH2OH)2. It is a colorless low-melting solid used in the production of polyester resins. Commercial samples consist of a mixture of cis and trans isomers. It is a di-substituted derivative of cyclohexane and is classified as a diol, meaning that it has two OH functional groups. Commercial CHDM typically has a cis/trans ratio of 30:70.

Poly(ethylene adipate) Chemical compound

Poly(ethylene adipate) or PEA is an aliphatic polyester. It is most commonly synthesized from a polycondensation reaction between ethylene glycol and adipic acid. PEA has been studied as it is biodegradable through a variety of mechanisms and also fairly inexpensive compared to other polymers. Its lower molecular weight compared to many polymers aids in its biodegradability.

<span class="mw-page-title-main">Graft polymer</span> Polymer with a backbone of one composite and random branches of another composite

In polymer chemistry, graft polymers are segmented copolymers with a linear backbone of one composite and randomly distributed branches of another composite. The picture labeled "graft polymer" shows how grafted chains of species B are covalently bonded to polymer species A. Although the side chains are structurally distinct from the main chain, the individual grafted chains may be homopolymers or copolymers. Graft polymers have been synthesized for many decades and are especially used as impact resistant materials, thermoplastic elastomers, compatibilizers, or emulsifiers for the preparation of stable blends or alloys. One of the better-known examples of a graft polymer is a component used in high impact polystyrene, consisting of a polystyrene backbone with polybutadiene grafted chains.

Rufina G. Álamo Matesanz is a Spanish-American polymer scientist known particularly for her research on polyethylene and polypropylene and on sustainable polymers such as polyoxymethylene made from biomass. She is Simon Ostrach Professor of Engineering and Distinguished Research Professor of Chemical and Biomedical Engineering in the Florida A&M University – Florida State University College of Engineering.

References

CC-BY-SA-icon-80x15.png  This article incorporates text by Marcus Knappert available under the CC BY-SA 3.0 license.

  1. 1 2 3 Mutlu, Hatice; Lutz, Jean-François (2014). "Reading Polymers: Sequencing of Natural and Synthetic Macromolecules". Angewandte Chemie International Edition. 53 (48): 13010–13019. doi:10.1002/anie.201406766. ISSN   1521-3773. PMID   25283068.
  2. 1 2 3 4 Ilarduya, Antxon Martínez de; Muñoz‐Guerra, Sebastián (2014). "Chemical Structure and Microstructure of Poly(alkylene terephthalate)s, their Copolyesters, and their Blends as Studied by NMR". Macromolecular Chemistry and Physics. 215 (22): 2138–2160. doi:10.1002/macp.201400239. ISSN   1521-3935.
  3. Huang, Doan-Ho; Woo, E. M.; Lee, Li-Ting (May 2006). "A comparative study on transreactions induced phase changes in blends of poly(trimethylene terephthalate) and poly(ethylene naphthalate) upon annealing". Colloid and Polymer Science. 284 (8): 843–852. doi:10.1007/s00396-005-1443-x. ISSN   0303-402X. S2CID   93649623.
  4. Eersels, K. L. L.; Aerdts, A. M.; Groeninckx, G. (1999-04-09), Fakirov, Stoyko (ed.), "Reactive Melt Processing of Aliphatic/Aromatic Polyamide Blends: Effect on Molecular Structure, Semicrystalline Morphology, and Thermal Properties", Transreactions in Condensation Polymers, Weinheim, Germany: Wiley-VCH Verlag GmbH, pp. 267–317, doi:10.1002/9783527613847.ch7, ISBN   978-3-527-61384-7 , retrieved 2021-01-28
  5. Yamadera, Reizo; Murano, Masao (September 1967). "The determination of randomness in copolyesters by high resolution nuclear magnetic resonance". Journal of Polymer Science Part A-1: Polymer Chemistry. 5 (9): 2259–2268. doi:10.1002/pol.1967.150050905.
  6. Devaux, J.; Godard, P.; Mercier, J. P.; Touillaux, R.; Dereppe, J. M. (October 1982). "Bisphenol-A polycarbonate–poly(butylene terephthalate) transesterification. II. Structure analysis of the reaction products by IR and 1H and 13C NMR". Journal of Polymer Science: Polymer Physics Edition. 20 (10): 1881–1894. doi:10.1002/pol.1982.180201011.
  7. Li, Wen-Da; Zeng, Jian-Bing; Lou, Xiao-Jie; Zhang, Jing-Jing; Wang, Yu-Zhong (2012). "Aromatic-aliphatic random and block copolyesters: synthesis, sequence distribution and thermal properties". Polymer Chemistry. 3 (5): 1344. doi:10.1039/c2py20068f. ISSN   1759-9954.
  8. Mutlu, Hatice; Lutz, Jean-François (2014-11-24). "Reading Polymers: Sequencing of Natural and Synthetic Macromolecules". Angewandte Chemie International Edition. 53 (48): 13010–13019. doi:10.1002/anie.201406766. PMID   25283068.