SgrS RNA

Last updated
SgrS RNA
RF00534.jpg
Identifiers
SymbolSgrS
Rfam RF00534
Other data
RNA type Gene; antisense
Domain(s) Bacteria
GO GO:0032057 GO:0043488 GO:0030371
SO SO:0000655
PDB structures PDBe

SgrS (sugar transport-related sRNA, previously named ryaA) [1] is a 227 nucleotide small RNA that is activated by SgrR in Escherichia coli during glucose-phosphate stress. The nature of glucose-phosphate stress is not fully understood, but is correlated with intracellular accumulation of glucose-6-phosphate. [2] SgrS helps cells recover from glucose-phosphate stress by base pairing with ptsG mRNA (encoding the glucose transporter) and causing its degradation in an RNase E dependent manner. [3] [4] Base pairing between SgrS and ptsG mRNA also requires Hfq, an RNA chaperone frequently required by small RNAs that affect their targets through base pairing. [5] The inability of cells expressing sgrS to create new glucose transporters leads to less glucose uptake and reduced levels of glucose-6-phosphate. SgrS is an unusual small RNA in that it also encodes a 43 amino acid functional polypeptide, SgrT, which helps cells recover from glucose-phosphate stress by preventing glucose uptake. The activity of SgrT does not affect the levels of ptsG mRNA of PtsG protein. [2] It has been proposed that SgrT exerts its effects through regulation of the glucose transporter, PtsG. [6] [7]

Contents

SgrS was originally discovered in E. coli but homologues have since been identified in other Gammaproteobacteria such as Salmonella enterica and members of the genus Citrobacter . [8] A comparative genomics based target prediction approach that employs these homologs, has been developed and was used to predict the SgrS target, ptsI (b2416), which was subsequently verified experimentally. [9]

Related Research Articles

The gene rpoS encodes the sigma factor sigma-38, a 37.8 kD protein in Escherichia coli. Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. rpoS is transcribed in late exponential phase, and RpoS is the primary regulator of stationary phase genes. RpoS is a central regulator of the general stress response and operates in both a retroactive and a proactive manner: it not only allows the cell to survive environmental challenges, but it also prepares the cell for subsequent stresses (cross-protection). The transcriptional regulator CsgD is central to biofilm formation, controlling the expression of the curli structural and export proteins, and the diguanylate cyclase, adrA, which indirectly activates cellulose production. The rpoS gene most likely originated in the gammaproteobacteria.

<span class="mw-page-title-main">DicF RNA</span> Non-coding RNA

DicF RNA is a non-coding RNA that is an antisense inhibitor of cell division gene ftsZ. DicF is bound by the Hfq protein which enhances its interaction with its targets. Pathogenic E. coli strains possess multiple copies of sRNA DicF in their genomes, while non-pathogenic strains do not. DicF and Hfq are both necessary to reduce FtsZ protein levels, leading to cell filamentation under anaerobic conditions.

<span class="mw-page-title-main">DsrA RNA</span> Non-coding RNA

DsrA RNA is a non-coding RNA that regulates both transcription, by overcoming transcriptional silencing by the nucleoid-associated H-NS protein, and translation, by promoting efficient translation of the stress sigma factor, RpoS. These two activities of DsrA can be separated by mutation: the first of three stem-loops of the 85 nucleotide RNA is necessary for RpoS translation but not for anti-H-NS action, while the second stem-loop is essential for antisilencing and less critical for RpoS translation. The third stem-loop, which behaves as a transcription terminator, can be substituted by the trp transcription terminator without loss of either DsrA function. The sequence of the first stem-loop of DsrA is complementary with the upstream leader portion of RpoS messenger RNA, suggesting that pairing of DsrA with the RpoS message might be important for translational regulation. The structures of DsrA and DsrA/rpoS complex were studied by NMR. The study concluded that the sRNA contains a dynamic conformational equilibrium for its second stem–loop which might be an important mechanism for DsrA to regulate the translations of its multiple target mRNAs.

<span class="mw-page-title-main">GcvB RNA</span>

The gcvB RNA gene encodes a small non-coding RNA involved in the regulation of a number of amino acid transport systems as well as amino acid biosynthetic genes. The GcvB gene is found in enteric bacteria such as Escherichia coli. GcvB regulates genes by acting as an antisense binding partner of the mRNAs for each regulated gene. This binding is dependent on binding to a protein called Hfq. Transcription of the GcvB RNA is activated by the adjacent GcvA gene and repressed by the GcvR gene. A deletion of GcvB RNA from Y. pestis changed colony shape as well as reducing growth. It has been shown by gene deletion that GcvB is a regulator of acid resistance in E. coli. GcvB enhances the ability of the bacterium to survive low pH by upregulating the levels of the alternate sigma factor RpoS. A polymeric form of GcvB has recently been identified. Interaction of GcvB with small RNA SroC triggers the degradation of GcvB by RNase E, lifting the GcvB-mediated mRNA repression of its target genes.

<span class="mw-page-title-main">OmrA-B RNA</span>

The OmrA-B RNA gene family is a pair of homologous OmpR-regulated small non-coding RNA that was discovered in E. coli during two large-scale screens. OmrA-B is highly abundant in stationary phase, but low levels could be detected in exponentially growing cells as well. RygB is adjacent to RygA a closely related RNA. These RNAs bind to the Hfq protein and regulate gene expression by antisense binding. They negatively regulate the expression of several genes encoding outer membrane proteins, including cirA, CsgD, fecA, fepA and ompT by binding in the vicinity of the Shine-Dalgarno sequence, suggesting the control of these targets is dependent on Hfq protein and RNase E. Taken together, these data suggest that OmrA-B participates in the regulation of outer membrane composition, responding to environmental conditions.

<span class="mw-page-title-main">RprA RNA</span>

The RprA RNA gene encodes a 106 nucleotide regulatory non-coding RNA. Translational regulation of the stationary phase sigma factor RpoS is mediated by the formation of a double-stranded RNA stem-loop structure in the upstream region of the rpoS messenger RNA, occluding the translation initiation site.

<span class="mw-page-title-main">RybB RNA</span>

RybB is a small non-coding RNA was identified in a large scale screen of Escherichia coli. The function of this short RNA has been studied using a transcriptomic approach and kinetic analyses of target mRNA decay in vivo. RybB was identified as a factor that selectively accelerates the decay of multiple major omp mRNAs upon induction of the envelope stress response. This RNA has been shown to bind to the Hfq protein.

<span class="mw-page-title-main">RyhB</span> 90 nucleotide RNA

RyhB RNA is a 90 nucleotide RNA that down-regulates a set of iron-storage and iron-using proteins when iron is limiting; it is itself negatively regulated by the ferric uptake repressor protein, Fur.

<span class="mw-page-title-main">MicA RNA</span>

The MicA RNA is a small non-coding RNA that was discovered in E. coli during a large scale screen. Expression of SraD is highly abundant in stationary phase, but low levels could be detected in exponentially growing cells as well.

<span class="mw-page-title-main">ArcZ RNA</span>

In molecular biology the ArcZ RNA is a small non-coding RNA (ncRNA). It is the functional product of a gene which is not translated into protein. ArcZ is an Hfq binding RNA that functions as an antisense regulator of a number of protein coding genes.

<span class="mw-page-title-main">SroB RNA</span>

The sroB RNA is a non-coding RNA gene of 90 nucleotides in length. sroB is found in several Enterobacterial species but its function is unknown. SroB is found in the intergenic region on the opposite strand to the ybaK and ybaP genes. SroB is expressed in stationary phase. Experiments have shown that SroB is a Hfq binding sRNA.

<span class="mw-page-title-main">SroC RNA</span>

The bacterial SroC RNA is a non-coding RNA gene of around 160 nucleotides in length. SroC is found in several enterobacterial species. This RNA interacts with the Hfq protein.

<span class="mw-page-title-main">Hfq protein</span>

The Hfq protein encoded by the hfq gene was discovered in 1968 as an Escherichia coli host factor that was essential for replication of the bacteriophage Qβ. It is now clear that Hfq is an abundant bacterial RNA binding protein which has many important physiological roles that are usually mediated by interacting with Hfq binding sRNA.

<span class="mw-page-title-main">Hfq binding sRNA</span>

An Hfq binding sRNA is an sRNA that binds the bacterial RNA binding protein called Hfq. A number of bacterial small RNAs which have been shown to bind to Hfq have been characterised . Many of these RNAs share a similar structure composed of three stem-loops. Several studies have expanded this list, and experimentally validated a total of 64 Hfq binding sRNA in Salmonella Typhimurium. A transcriptome wide study on Hfq binding sites in Salmonella mapped 126 Hfq binding sites within sRNAs. Genomic SELEX has been used to show that Hfq binding RNAs are enriched in the sequence motif 5′-AAYAAYAA-3′. Genome-wide study identified 40 candidate Hfq-dependent sRNAs in plant pathogen Erwinia amylovora. 12 of them were confirmed by Northern blot.

<span class="mw-page-title-main">MicX sRNA</span>

MicX sRNA is a small non-coding RNA found in Vibrio cholerae. It was given the name MicX as it has a similar function to MicA, MicC and MicF in E. coli. MicX sRNA negatively regulates an outer membrane protein and also a component of an ABC transporter. These interactions were predicted and then confirmed using a DNA microarray.

Bacterial small RNAs (bsRNA) are small RNAs produced by bacteria; they are 50- to 500-nucleotide non-coding RNA molecules, highly structured and containing several stem-loops. Numerous sRNAs have been identified using both computational analysis and laboratory-based techniques such as Northern blotting, microarrays and RNA-Seq in a number of bacterial species including Escherichia coli, the model pathogen Salmonella, the nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti, marine cyanobacteria, Francisella tularensis, Streptococcus pyogenes, the pathogen Staphylococcus aureus, and the plant pathogen Xanthomonas oryzae pathovar oryzae. Bacterial sRNAs affect how genes are expressed within bacterial cells via interaction with mRNA or protein, and thus can affect a variety of bacterial functions like metabolism, virulence, environmental stress response, and structure.

<span class="mw-page-title-main">FnrS RNA</span>

FnrS RNA is a family of Hfq-binding small RNA whose expression is upregulated in response to anaerobic conditions. It is named FnrS because its expression is strongly dependent on fumarate and nitrate reductase regulator (FNR), a direct oxygen availability sensor.

In molecular biology, Vibrio cholerae ToxT activated RNAs are small RNAs which are produced by the bacterium Vibrio cholerae. They are regulated by the transcriptional activator ToxT and may play a role in V. cholerae virulence. Two ToxT activated RNAs have been described: TarA and TarB.

<span class="mw-page-title-main">Susan Gottesman</span> American microbiologist

Susan Gottesman is a microbiologist at the National Cancer Institute (NCI), which is part of the National Institutes of Health. Gottesman has been the editor of the Annual Review of Microbiology since 2008.

<span class="mw-page-title-main">Anti small RNA</span> RNA sequences

Antisense small RNAs are short RNA sequences that are complementary to other small RNA (sRNA) in the cell.

References

  1. Vanderpool CK, Gottesman S (November 2004). "Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system". Molecular Microbiology. 54 (4): 1076–89. doi: 10.1111/j.1365-2958.2004.04348.x . PMID   15522088. S2CID   24804508.
  2. 1 2 Wadler CS, Vanderpool CK (December 2007). "A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide". Proceedings of the National Academy of Sciences of the United States of America. 104 (51): 20454–9. doi: 10.1073/pnas.0708102104 . PMC   2154452 . PMID   18042713.
  3. Vanderpool CK, Gottesman S (March 2007). "The novel transcription factor SgrR coordinates the response to glucose-phosphate stress". Journal of Bacteriology. 189 (6): 2238–48. doi:10.1128/JB.01689-06. PMC   1899371 . PMID   17209026.
  4. Rice JB, Vanderpool CK (May 2011). "The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes". Nucleic Acids Research. 39 (9): 3806–19. doi:10.1093/nar/gkq1219. PMC   3089445 . PMID   21245045.
  5. Kawamoto H, Koide Y, Morita T, Aiba H (August 2006). "Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq". Molecular Microbiology. 61 (4): 1013–22. doi: 10.1111/j.1365-2958.2006.05288.x . PMID   16859494. S2CID   35533720.
  6. Maki K, Morita T, Otaka H, Aiba H (May 2010). "A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA". Molecular Microbiology. 76 (3): 782–92. doi:10.1111/j.1365-2958.2010.07141.x. PMID   20345651. S2CID   39687800.
  7. Kawamoto H, Morita T, Shimizu A, Inada T, Aiba H (February 2005). "Implication of membrane localization of target mRNA in the action of a small RNA: mechanism of post-transcriptional regulation of glucose transporter in Escherichia coli". Genes & Development. 19 (3): 328–38. doi:10.1101/gad.1270605. PMC   546511 . PMID   15650111.
  8. Horler RS, Vanderpool CK (September 2009). "Homologs of the small RNA SgrS are broadly distributed in enteric bacteria but have diverged in size and sequence". Nucleic Acids Research. 37 (16): 5465–76. doi:10.1093/nar/gkp501. PMC   2760817 . PMID   19531735.
  9. Wright PR, Richter AS, Papenfort K, Mann M, Vogel J, Hess WR, Backofen R, Georg J (September 2013). "Comparative genomics boosts target prediction for bacterial small RNAs". Proceedings of the National Academy of Sciences of the United States of America. 110 (37): E3487-96. Bibcode:2013PNAS..110E3487W. doi: 10.1073/pnas.1303248110 . PMC   3773804 . PMID   23980183.

Further reading