This article needs additional citations for verification . (October 2015) (Learn how and when to remove this template message) |
This article provides insufficient context for those unfamiliar with the subject.October 2009) (Learn how and when to remove this template message) ( |
Shape waves are excitations propagating along Josephson vortices or fluxons. In the case of two-dimensional Josephson junctions (thick long Josephson junctions with an extra dimension) described by the 2D sine-Gordon equation, shape waves are distortions of a Josephson vortex line of an arbitrary profile. Shape waves have remarkable properties exhibiting Lorentz contraction and time dilation similar to that in special relativity. Position of the shape wave excitation on a Josephson vortex acts like a “minute-hand” showing the time in the rest-frame associated with the vortex. At some conditions, a moving vortex with the shape excitation can have less energy than the same vortex without it.
A Bose–Einstein condensate (BEC) is a state of matter which is typically formed when a gas of bosons at low densities is cooled to temperatures very close to absolute zero (-273.15 °C). Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which point microscopic quantum phenomena, particularly wavefunction interference, become apparent macroscopically. A BEC is formed by cooling a gas of extremely low density, about one-hundred-thousandth (1/100,000) the density of normal air, to ultra-low temperatures.
Superfluid helium-4 is the superfluid form of helium-4, an isotope of the element helium. A superfluid is a state of matter in which matter behaves like a fluid with zero viscosity. The substance, which looks like a normal liquid, flows without friction past any surface, which allows it to continue to circulate over obstructions and through pores in containers which hold it, subject only to its own inertia.
In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems.
In physics, an anyon is a type of quasiparticle that occurs only in two-dimensional systems, with properties much less restricted than fermions and bosons. In general, the operation of exchanging two identical particles may cause a global phase shift but cannot affect observables. Anyons are generally classified as abelian or non-abelian. Abelian anyons have been detected and play a major role in the fractional quantum Hall effect. Non-abelian anyons have not been definitively detected, although this is an active area of research.
The Josephson effect is the phenomenon of supercurrent, a current that flows indefinitely long without any voltage applied, across a device known as a Josephson junction (JJ), which consists of two or more superconductors coupled by a weak link. The weak link can consist of a thin insulating barrier, a short section of non-superconducting metal (S-N-S), or a physical constriction that weakens the superconductivity at the point of contact (S-s-S).
In quantum computing, a charge qubit is a qubit whose basis states are charge states. In superconducting quantum computing, a charge qubit is formed by a tiny superconducting island coupled by a Josephson junction to a superconducting reservoir. The state of the qubit is determined by the number of Cooper pairs which have tunneled across the junction. In contrast with the charge state of an atomic or molecular ion, the charge states of such an "island" involve a macroscopic number of conduction electrons of the island. The quantum superposition of charge states can be achieved by tuning the gate voltage U that controls the chemical potential of the island. The charge qubit is typically read-out by electrostatically coupling the island to an extremely sensitive electrometer such as the radio-frequency single-electron transistor.
The Berezinskii–Kosterlitz–Thouless transition is a phase transition in the two-dimensional (2-D) XY model. It is a transition from bound vortex-antivortex pairs at low temperatures to unpaired vortices and anti-vortices at some critical temperature. The transition is named for condensed matter physicists Vadim Berezinskii, John M. Kosterlitz and David J. Thouless. BKT transitions can be found in several 2-D systems in condensed matter physics that are approximated by the XY model, including Josephson junction arrays and thin disordered superconducting granular films. More recently, the term has been applied by the 2-D superconductor insulator transition community to the pinning of Cooper pairs in the insulating regime, due to similarities with the original vortex BKT transition.
In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.
In superconductivity, a semifluxon is a half integer vortex of supercurrent carrying the magnetic flux equal to the half of the magnetic flux quantum Φ0. Semifluxons exist in the 0-π long Josephson junctions at the boundary between 0 and π regions. This 0-π boundary creates a π discontinuity of the Josephson phase. The junction reacts to this discontinuity by creating a semifluxon. Vortex's supercurrent circulates around 0-π boundary. In addition to semifluxon, there exist also an antisemifluxon. It carries the flux −Φ0/2 and its supercurrent circulates in the opposite direction.
In superconductivity, a Josephson vortex is a quantum vortex of supercurrents in a Josephson junction. The supercurrents circulate around the vortex center which is situated inside the Josephson barrier, unlike Abrikosov vortices in type-II superconductors, which are located in the superconducting condensate.
A Majorana fermion, also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesized by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles.
A Josephson junction is a quantum mechanical device which is made of two superconducting electrodes separated by a barrier. A π Josephson junction is a Josephson junction in which the Josephson phase φ equals π in the ground state, i.e. when no external current or magnetic field is applied.
In a standard superconductor, described by a complex field fermionic condensate wave function, vortices carry quantized magnetic fields because the condensate wave function is invariant to increments of the phase by . There a winding of the phase by creates a vortex which carries one flux quantum. See quantum vortex.
In quantum computing, and more specifically in superconducting quantum computing, the phase qubit is a superconducting device based on the superconductor–insulator–superconductor (SIS) Josephson junction, designed to operate as a quantum bit, or qubit.
The Aharonov–Casher effect is a quantum mechanical phenomenon predicted in 1984 by Yakir Aharonov and Aharon Casher, in which a traveling magnetic dipole is affected by an electric field. It is dual to the Aharonov–Bohm effect, in which the quantum phase of a charged particle depends upon which side of a magnetic flux tube it comes through. In the Aharonov–Casher effect, the particle has a magnetic moment and the tubes are charged instead. It was observed in a gravitational neutron interferometer in 1989 and later by fluxon interference of magnetic vortices in Josephson junctions. It has also been seen with electrons and atoms.
In superconductivity, a Pearl vortex is a vortex of supercurrent in a thin film of type-II superconductor, first described in 1964 by Judea Pearl. A Pearl vortex is similar to Abrikosov vortex except for its magnetic field profile which, due to the dominant air-metal interface, diverges sharply as 1/ at short distances from the center, and decays slowly, like 1/ at long distances. Abrikosov's vortices, in comparison, have very short range interaction and diverge as near the center.
In quantum computing, and more specifically in superconducting quantum computing, a transmon is a type of superconducting charge qubit that was designed to have reduced sensitivity to charge noise. The transmon was developed by Robert J. Schoelkopf, Michel Devoret, Steven M. Girvin and their colleagues at Yale University in 2007. Its name is an abbreviation of the term transmission line shunted plasma oscillation qubit; one which consists of a Cooper-pair box "where the two superconductors are also capacitatively shunted in order to decrease the sensitivity to charge noise, while maintaining a sufficient anharmonicity for selective qubit control".
A φ Josephson junction is a particular type of the Josephson junction, which has a non-zero Josephson phase φ across it in the ground state. A π Josephson junction, which has the minimum energy corresponding to the phase of π, is a specific example of it.
Alexandre Bouzdine (Buzdin) is a French and Russian theoretical physicist in the field of superconductivity and condensed matter physics. He was awarded the Holweck Medal in physics in 2013 and obtained the Gay-Lussac Humboldt Prize in 2019 for his theoretical contributions in the field of coexistence between superconductivity and magnetism.
Antonio Barone was an Italian physicist. He was Emeritus Professor of the Federico II University of Naples and Director of the CNR Cybernetics Institute in Arco Felice (Naples), Italy. He is best known for his work on superconductivity and Josephson effect.
This physics-related article is a stub. You can help Wikipedia by expanding it. |