Sharp waves and ripples

Last updated

Sharp waves and ripples (SWRs) are oscillatory patterns produced by extremely synchronised activity of neurons in the mammalian hippocampus and neighbouring regions which occur spontaneously in idle waking states or during NREM sleep. [1] They can be observed with a variety of imaging methods, such as EEG. They are composed of large amplitude sharp waves in local field potential and produced by tens of thousands of neurons firing together within 30–100 ms window. [1] They are some of the most synchronous oscillations patterns in the brain, making them susceptible to pathological patterns such as epilepsy.They have been extensively characterised and described by György Buzsáki and have been shown to be involved in memory consolidation in NREM sleep and the replay of memories acquired during wakefulness.

Contents

History and background

Neuronal oscillations are important components of neuroscience research. During the last two decades, hippocampal oscillations have been a major focus in the research of neuronal oscillations. [2] Among different oscillations present in the brain, SWRs are the first and only population activity that start in the developing hippocampus, but they are the least understood network pattern of the hippocampus. [3]

Originally, these large waves were observed by Cornelius Vanderwolf in 1969, and later John O'Keefe investigated SPW-Rs in more detail in 1978 while studying the spatial memory of rats. [2] György Buzsáki and his collaborators studied and characterized SWRs in detail and described their physiological functions and role in different states of the animal. [2] [4]

These patterns are large amplitude, aperiodic recurrent oscillations occurring in the apical dendritic layer of the CA1 regions of the hippocampus. Sharp waves are followed by synchronous fast field oscillations (140–200 Hz frequency), named ripples. [5]
Features of these oscillations provided evidences for their role in inducing synaptic plasticity and memory consolidation. Among these features are their widespread effect on the population neurons in the hippocampus, and the experience-dependent content of participating neurons. Studies have shown that elimination of SWRs by electrical stimulation interfered with rats ability to recall the spatial memory information. [6] [7] These features support functional role of sharp waves and ripples in memory consolidation.

Hippocampal formation

Structures

Circuit

Hippocampal circuit in rodent hippocampus. Connections between CA3 and CA1 regions with parahippocampal structures is shown. CajalHippocampus (modified).png
Hippocampal circuit in rodent hippocampus. Connections between CA3 and CA1 regions with parahippocampal structures is shown.

The trisynaptic loop, as the main circuit of the hippocampus responsible for information transfer between the hippocampus and the cortex, is also the circuit producing SWRs. This circuit provides the pathway by which SWRs affect the cortical areas, and also receive inputs from them. Consequently, this loop is shown to be the pathway responsible for conversion of short-term memory to long-term memory. The trisynaptic loop of the hippocampus is one of the most thoroughly studied circuits for long-term potentiation.

Participant neuronal populations

Emergence of these self-organized hippocampal events are dependent on interactions between various pyramidal and granule neurons with different types of the interneurons in this circuit. Pyramidal cells of CA3 and CA1 dendritic layer region are important in generating these waves, and they affect the subiculum, parasubiculum, entorhinal cortex, and ultimately neurons of the neocortex. [3] During SWRs, which last approximately 100 milliseconds, 50,000–100,000 neurons discharge in synchrony, making SWRs the most synchronous event in the brain. [3] An important concept about the neuronal populations participating in these events is the fact that they are experience-dependent. Sequences that have been active during the animal's activity are the ones participating in SWRs. Activity naturally spreads along the pathways that have stronger synapses. This is one of the features of SWRs providing evidence for their role in memory consolidation.

Network mechanisms of generation

Self-emergent network

Population bursts of pyramidal cells in the CA3 region of the hippocampus via CA3 collaterals cause depolarization of pyramidal cells in the dendritic layer of the CA1 which give rise to extracellular negative waves–the sharp waves–followed by fast ripples. [8] Discharge of pyramidal cells of CA3 region also activates the GABAergic interneurons. [3] Sparse firing of CA1 pyramidal cells and in-phase inhibition from the activated interneurons, give rise to high frequency (200 Hz) network oscillations, which are the ripples. [9] CA1 population bursts lead to highly synchronized activity in the target population of parahippocampal structures. [10]

Effects of neocortical inputs

sleep spindle and K-complex in EEG Stage2sleep.svg
sleep spindle and K-complex in EEG

In spite of the self-emergent nature of the SWRs, their activity could be altered by inputs from the neocortex via the trisynaptic loop to the hippocampus. Activity of the neocortex during slow wave sleep determines inputs to the hippocampus; thalamocortical sleep spindles and delta waves are the sleep patterns of the neocortex. [11] These inputs contribute to the selection of different neuronal assemblies for initiation of SWRs, and affect the timing of the SWRs. [3] Different thalamocortical neuronal assemblies give rise to sleep spindles, and these cell assemblies affect the burst initiator for the sharp waves. In this manner, thalamocortical inputs affect the content of the SWRs going to neocortex.

Memory consolidation

Sharp waves and associated ripples are present in the mammalian brains of the species that have been investigated for this purpose, including mice, rats, rabbits, monkeys and humans. [5] In all of these species, they have been shown primarily to be involved in consolidation of recently acquired memories during the immobility and slow-wave sleep. Characteristics of these oscillations, such as having experience dependent neuronal content, being affected by the cortical input, and reactivating neocortical pathways formed through recent experiences, provides evidences for their role in memory consolidation. Besides, some direct evidences for their role come from studies, investigating effects of their removal. Animal studies indicated that depletion of ripple activity by electrical stimulation, would impair formation of new memories in rats. [7] [6] Furthermore, in spatially non-demanding tasks, such as passive exploration, optogenetic disruption of SPW-R events interferes with the stabilisation of the newly formed hippocampal place cell code (ref, [12] but see ref [13] ). As for humans, what is currently suspected is that the hippocampus as a whole is important for some forms of memory consolidation such as declarative and spatial memories. [2] However, clear evidence for the role of SPW-R events in memory consolidation in the hippocampus of humans is still missing.

Two-stage model of memory

Based on the research findings about SPW-Rs, in 1989 an influential two-stage model of memory proposed by Buzsáki, that subsequent evidences supported it. Based on this model initial memories of the events are formed during the acquisition and reinforced during replay. Acquisition occurs by theta and gamma waves activating a neuronal pathway for initial formation of the memory. Later this pathway would get replayed following the SPW-Rs propagation to neocortex. Neuronal sequences during replay happen in a faster rate and are in both forward and reverse direction of the initial formation. [4]

Ripples and fast gamma

In spite of the fact that hippocampal ripples (140–220 Hz) and fast gamma (90–150 Hz) oscillations have similar mechanisms of generation, they are two distinct patterns in the hippocampus. They are both produced as the response of the CA1 region to inputs from the CA3 region. Ripples are only present when theta waves are relatively absent during sharp waves, whereas fast gamma waves occur during theta waves and sharp waves. [10] The magnitude and frequency of both ripples and fast gamma patterns are dependent on the magnitude of hippocampal sharp waves. Stronger excitation from sharp waves results in ripple oscillations, whereas weaker stimulations generate fast gamma patterns. [14] Besides they are shown to be region dependent, ripples that are the fastest oscillations are present in the CA1 region pyramidal cells while gamma oscillations dominate in CA3 region and parahippocampal structures. [10]

Disease state

Epilepsy

In addition to ongoing research on the role of SPW-R complexes in memory consolidation and neuronal plasticity, another major area of the attention is their role in development of epilepsy. As mentioned before, SPW-Rs are the most synchronous oscillations observed in the brain; which implies any abnormal activity in this network would bring significant consequences. One of the deviations from normal activity is fast ripples. Fast ripples are a pathologic pattern that emerges from the physiologic ripples. These fast ripples are field potentials of hypersynchronous bursting of excitatory neurons pyramidal cells at frequencies between 250 and 600 Hz. [15] Fast ripples activities in the hippocampus considered as pathologic patterns directly associated with epilepsy, but they appear as both physiologic and pathologic activity in neocortex. [16] Although underlying physiology and identifying contributions of fast ripples in generation of seizures are still under investigation and further research, studies are suggesting that fast ripples could be used as a biomarker of epileptogenic tissues. [17]

See also

Other brain waves

Related Research Articles

<span class="mw-page-title-main">Entorhinal cortex</span> Area of the temporal lobe of the brain

The entorhinal cortex (EC) is an area of the brain's allocortex, located in the medial temporal lobe, whose functions include being a widespread network hub for memory, navigation, and the perception of time. The EC is the main interface between the hippocampus and neocortex. The EC-hippocampus system plays an important role in declarative (autobiographical/episodic/semantic) memories and in particular spatial memories including memory formation, memory consolidation, and memory optimization in sleep. The EC is also responsible for the pre-processing (familiarity) of the input signals in the reflex nictitating membrane response of classical trace conditioning; the association of impulses from the eye and the ear occurs in the entorhinal cortex.

<span class="mw-page-title-main">Hippocampus</span> Vertebrate brain region involved in memory consolidation

The hippocampus is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, and plays important roles in the consolidation of information from short-term memory to long-term memory, and in spatial memory that enables navigation. The hippocampus is located in the allocortex, with neural projections into the neocortex in humans, as well as primates. The hippocampus, as the medial pallium, is a structure found in all vertebrates. In humans, it contains two main interlocking parts: the hippocampus proper, and the dentate gyrus.

A gamma wave or gamma rhythm is a pattern of neural oscillation in humans with a frequency between 25 and 140 Hz, the 40 Hz point being of particular interest. Gamma rhythms are correlated with large scale brain network activity and cognitive phenomena such as working memory, attention, and perceptual grouping, and can be increased in amplitude via meditation or neurostimulation. Altered gamma activity has been observed in many mood and cognitive disorders such as Alzheimer's disease, epilepsy, and schizophrenia. Elevated gamma activity has also been observed in moments preceding death.

Sleep spindles are bursts of neural oscillatory activity that are generated by interplay of the thalamic reticular nucleus (TRN) and other thalamic nuclei during stage 2 NREM sleep in a frequency range of ~11 to 16 Hz with a duration of 0.5 seconds or greater. After generation as an interaction of the TRN neurons and thalamocortical cells, spindles are sustained and relayed to the cortex by thalamo-thalamic and thalamo-cortical feedback loops regulated by both GABAergic and NMDA-receptor mediated glutamatergic neurotransmission. Sleep spindles have been reported for all tested mammalian species. Considering animals in which sleep-spindles were studied extensively, they appear to have a conserved main frequency of roughly 9–16 Hz. Only in humans, rats and dogs is a difference in the intrinsic frequency of frontal and posterior spindles confirmed, however.

<span class="mw-page-title-main">Slow-wave sleep</span> Period of sleep in humans and other animals

Slow-wave sleep (SWS), often referred to as deep sleep, consists of stage three of non-rapid eye movement sleep. It usually lasts between 70 and 90 minutes and takes place during the first hours of the night. Initially, SWS consisted of both Stage 3, which has 20–50 percent delta wave activity, and Stage 4, which has more than 50 percent delta wave activity.

<span class="mw-page-title-main">Neural oscillation</span> Brainwaves, repetitive patterns of neural activity in the central nervous system

Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons. At the level of neural ensembles, synchronized activity of large numbers of neurons can give rise to macroscopic oscillations, which can be observed in an electroencephalogram. Oscillatory activity in groups of neurons generally arises from feedback connections between the neurons that result in the synchronization of their firing patterns. The interaction between neurons can give rise to oscillations at a different frequency than the firing frequency of individual neurons. A well-known example of macroscopic neural oscillations is alpha activity.

Theta waves generate the theta rhythm, a neural oscillation in the brain that underlies various aspects of cognition and behavior, including learning, memory, and spatial navigation in many animals. It can be recorded using various electrophysiological methods, such as electroencephalogram (EEG), recorded either from inside the brain or from electrodes attached to the scalp.

In the rodent, the parasubiculum is a retrohippocampal isocortical structure, and a major component of the subicular complex. It receives numerous subcortical and cortical inputs, and sends major projections to the superficial layers of the entorhinal cortex.

In the rodent, the parasubiculum is a retrohippocampal isocortical structure, and a major component of the subicular complex. It receives numerous subcortical and cortical inputs, and sends major projections to the superficial layers of the entorhinal cortex.

Synaptic noise refers to the constant bombardment of synaptic activity in neurons. This occurs in the background of a cell when potentials are produced without the nerve stimulation of an action potential, and are due to the inherently random nature of synapses. These random potentials have similar time courses as excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs), yet they lead to variable neuronal responses. The variability is due to differences in the discharge times of action potentials.

The trisynaptic circuit, or trisynaptic loop is a relay of synaptic transmission in the hippocampus. The circuit was initially described by the neuroanatomist Santiago Ramon y Cajal, in the early twentieth century, using the Golgi staining method. After the discovery of the trisynaptic circuit, a series of research has been conducted to determine the mechanisms driving this circuit. Today, research is focused on how this loop interacts with other parts of the brain, and how it influences human physiology and behaviour. For example, it has been shown that disruptions within the trisynaptic circuit leads to behavioural changes in rodent and feline models.

<span class="mw-page-title-main">Sleep and memory</span> Relationship between sleep and memory

The relationship between sleep and memory has been studied since at least the early 19th century. Memory, the cognitive process of storing and retrieving past experiences, learning and recognition, is a product of brain plasticity, the structural changes within synapses that create associations between stimuli. Stimuli are encoded within milliseconds; however, the long-term maintenance of memories can take additional minutes, days, or even years to fully consolidate and become a stable memory that is accessible. Therefore, the formation of a specific memory occurs rapidly, but the evolution of a memory is often an ongoing process.

A hippocampus prosthesis is a type of cognitive prosthesis. Prosthetic devices replace normal function of a damaged body part; this can be simply a structural replacement or a rudimentary, functional replacement.

Cornelius Hendrik "Case" Vanderwolf was a Canadian neuroscientist.

<span class="mw-page-title-main">Neuroscience of sleep</span> Study of the neuroscientific and physiological basis of the nature of sleep

The neuroscience of sleep is the study of the neuroscientific and physiological basis of the nature of sleep and its functions. Traditionally, sleep has been studied as part of psychology and medicine. The study of sleep from a neuroscience perspective grew to prominence with advances in technology and the proliferation of neuroscience research from the second half of the twentieth century.

<span class="mw-page-title-main">Large irregular activity</span>

Large (amplitude) irregular activity (LIA), refers to one of two local field states that have been observed in the hippocampus. The other field state is that of the theta rhythm. The theta state is characterised by a steady slow oscillation of around 6–7 Hz. LIA has a predominantly lower oscillation frequency but contains some sharp spikes, called sharp waves of a higher frequency than that of theta. LIA accompanies the small irregular activity state to which the term LIA has been used to describe overall.

Hippocampal replay is a phenomenon observed in rats, mice, cats, rabbits, songbirds and monkeys. During sleep or awake rest, replay refers to the re-occurrence of a sequence of cell activations that also occurred during activity, but the replay has a much faster time scale. It may be in the same order, or in reverse. Cases were also found where a sequence of activations occurs before the actual activity, but it is still the same sequence. This is called preplay.

György Buzsáki is the Biggs Professor of Neuroscience at New York University School of Medicine.

<span class="mw-page-title-main">Phase precession</span> Neural mechanism

Phase precession is a neurophysiological process in which the time of firing of action potentials by individual neurons occurs progressively earlier in relation to the phase of the local field potential oscillation with each successive cycle. In place cells, a type of neuron found in the hippocampal region of the brain, phase precession is believed to play a major role in the neural coding of information. John O'Keefe, who later shared the 2014 Nobel Prize in Physiology or Medicine for his discovery that place cells help form a "map" of the body's position in space, co-discovered phase precession with Michael Recce in 1993.

<span class="mw-page-title-main">High-frequency oscillations</span> Brainwaves with frequencies larger than 80 Hz

High-frequency oscillations (HFO) are brain waves of the frequency faster than ~80 Hz, generated by neuronal cell population. High-frequency oscillations can be recorded during an electroencephalagram (EEG), local field potential (LFP) or electrocorticogram (ECoG) electrophysiology recordings. They are present in physiological state during sharp waves and ripples - oscillatory patterns involved in memory consolidation processes. HFOs are associated with pathophysiology of the brain like epileptic seizure and are often recorded during seizure onset. It makes a promising biomarker for the identification of the epileptogenic zone. Other studies points to the HFO role in psychiatric disorders and possible implications to psychotic episodes in schizophrenia.

References

  1. 1 2 Buzsáki, Gyorgy (2021). The brain from inside out. New York, NY, United States of America. p. 200. ISBN   978-0-19-754950-6. OCLC   1225288277.
  2. 1 2 3 4 Maier, N; Draguhn A.; Schmitz D; Both M. (March 2013). "Fast network oscillations in the hippocampus Phenomena, mechanisms and open questions at the interface of cellular and systemic neurosciences". e-Neuroforum. 4 (1): 1–10. doi: 10.1007/s13295-013-0038-0 .
  3. 1 2 3 4 5 Buzsáki, György (2006). Rhythms of the brain. New York: Oxford Univ. Press. pp. 344–349. ISBN   978-0-19-982823-4.
  4. 1 2 Buzsáki, Györgyi (1989). "Two-stage model of memory trace formation: a role for "noisy" brain states". Neuroscience. 31 (3): 551–570. doi:10.1016/0306-4522(89)90423-5. PMID   2687720. S2CID   23957660.
  5. 1 2 Logothetis, N. K.; O. Eschenko; Y. Murayama; M. Augath; T. Steudel; H. C. Evard; M. Besserve; A. Oeltermann (November 2012). "Hippocampal–cortical interaction during periods of subcortical silence". Nature. 491 (7425): 547–553. Bibcode:2012Natur.491..547L. doi:10.1038/nature11618. PMID   23172213. S2CID   4416746.
  6. 1 2 Girardeau, Gabrielle; Karim Benchenane; Sidney I Wiener; György Buzsáki; Michaël B Zugaro (September 2009). "Selective suppression of hippocampal ripples impairs spatial memory". Nature Neuroscience. 12 (10): 1222–1223. doi:10.1038/nn.2384. PMID   19749750. S2CID   23637142.
  7. 1 2 Ego-Stengel, Valérie; Matthew A. Wilson (January 2010). "Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat" (PDF). Hippocampus. 20 (1): 1–10. doi:10.1002/hipo.20707. hdl:1721.1/70466. PMC   2801761 . PMID   19816984.
  8. Buzsaki, Gyorgy; Horvath Z; Urioste R; Hetke J; Wise K (15 May 1992). "High-frequency network oscillation in the hippocampus". Science. 256 (5059): 1025–1027. Bibcode:1992Sci...256.1025B. doi:10.1126/science.1589772. PMID   1589772.
  9. Ylinen, Aaren; Anatol Bragin; Zoltan Nadasdy; Gabor Jando; Imre Sezabo; Attila Sik; G. Buzsáki (January 1995). "Sharp Wave-Associated High-Frequency Oscillation (200 Hz) in the Intact Hippocampus: Network and Intracellular Mechanism". The Journal of Neuroscience. 15 (1 Pt 1): 30–46. doi:10.1523/JNEUROSCI.15-01-00030.1995. PMC   6578299 . PMID   7823136.
  10. 1 2 3 Buzsáki, György; Fernando Lopes da Silvab (March 2012). "High frequency oscillations in the intact brain". Progress in Neurobiology. 98 (3): 241–249. doi:10.1016/j.pneurobio.2012.02.004. PMC   4895831 . PMID   22449727.
  11. Sirota, Anton; Jozsef Csicsvari; Derek Buhl; Györgyi Buzsáki (February 2003). "Communication between neocortex and hippocampus during sleep in rodents". Proceedings of the National Academy of Sciences of the United States of America. 100 (4): 2065–2069. Bibcode:2003PNAS..100.2065S. doi: 10.1073/pnas.0437938100 . PMC   149959 . PMID   12576550.
  12. van de Ven GM, Trouche S, McNamara CG, Allen K, Dupret D (7 Dec 2016). "Hippocampal Offline Reactivation Consolidates Recently Formed Cell Assembly Patterns during Sharp Wave-Ripples". Neuron. 92 (5): 968–974. doi:10.1016/j.neuron.2016.10.020. PMC   5158132 . PMID   27840002.
  13. Kovacs KA, O'Neill J, Schoenenberger P, Penttonen M, Ranguel Guerrero DK, Csicsvari J (19 Nov 2016). "Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus". PLOS ONE. 11 (10): e0164675. Bibcode:2016PLoSO..1164675K. doi: 10.1371/journal.pone.0164675 . PMC   5070819 . PMID   27760158.
  14. Sullivan, David; Jozsef Csicsvari; Kenji Mizuseki; Sean Montgomery; Kamran Diba; György Buzsáki (June 2011). "Relationships between hippocampal sharp waves, ripples and fast gamma oscillation: influence of dentate and entorhinal cortical activity". Neuroscience. 31 (23): 8605–8616. doi:10.1523/JNEUROSCI.0294-11.2011. PMC   3134187 . PMID   21653864.
  15. Bragin A, Engel J Jr, Wilson CL, Fried I, Mathern GW (February 1999). "Hippocampal and entorhinal cortex high-frequency oscillations (100--500 Hz) in human epileptic brain and in kainic acid--treated rats with chronic seizures". Epilepsia. 40 (2): 127–37. doi: 10.1111/j.1528-1157.1999.tb02065.x . PMID   9952257. S2CID   45089490.
  16. Köhling, Rüdiger; Staley Kevin (April 2011). "Network mechanisms for fast ripple activity in epileptic tissue". Epilepsy Research. 97 (3): 318–323. doi:10.1016/j.eplepsyres.2011.03.006. PMC   3152631 . PMID   21470826.
  17. Jacobs, J.; P. Levan; C.E. Chatillon; A. Olivier; F. Dubeau; J. Gotman (March 2009). "High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type". Brain. 132 (4): 1022–1037. doi:10.1093/brain/awn351. PMC   3792079 . PMID   19297507.

Further reading