Shewhart individuals control chart

Last updated
Individuals and moving range control chart
Originally proposed by Walter A. Shewhart
Process observations
Rational subgroup sizen = 1
Measurement typeAverage quality characteristic per unit
Quality characteristic type Variables data
Underlying distribution none
Performance
Size of shift to detect≥ 1.5σ
Process variation chart
MR chart for a paired individuals and MR chart.svg
Center line
Upper control limit
Lower control limit
Plotted statistic
Process mean chart
Individuals chart for a paired individuals and MR chart.svg
Center line
Control limits
Plotted statisticxi

In statistical quality control, the individual/moving-range chart is a type of control chart used to monitor variables data from a business or industrial process for which it is impractical to use rational subgroups. [1]

Contents

The chart is necessary in the following situations: [2] :231

  1. Where automation allows inspection of each unit, so rational subgrouping has less benefit.
  2. Where production is slow so that waiting for enough samples to make a rational subgroup unacceptably delays monitoring
  3. For processes that produce homogeneous batches (e.g., chemical) where repeat measurements vary primarily because of measurement error

The "chart" actually consists of a pair of charts: one, the individuals chart, displays the individual measured values; the other, the moving range chart, displays the difference from one point to the next. As with other control charts, these two charts enable the user to monitor a process for shifts in the process that alter the mean or variance of the measured statistic.

Interpretation

As with other control charts, the individuals and moving range charts consist of points plotted with the control limits, or natural process limits. These limits reflect what the process will deliver without fundamental changes. [3] :43 Points outside of these control limits are signals indicating that the process is not operating as consistently as possible; that some assignable cause has resulted in a change in the process. Similarly, runs of points on one side of the average line should also be interpreted as a signal of some change in the process. When such signals exist, action should be taken to identify and eliminate them. When no such signals are present, no changes to the process control variables (i.e. "tampering") are necessary or desirable. [3] :125

Assumptions

The normal distribution is NOT assumed nor required in the calculation of control limits. Thus making the IndX/mR chart a very robust tool. This is demonstrated by Wheeler using real-world data [4] , [5] and for a number of highly non-normal probability distributions. [6]

Calculation and plotting

Calculation of moving range

The difference between data point, , and its predecessor, , is calculated as . For individual values, there are ranges.

Next, the arithmetic mean of these values is calculated as

If the data are normally distributed with standard deviation then the expected value of is , the mean absolute difference of the normal distribution.

Calculation of moving range control limit

The upper control limit for the range (or upper range limit) is calculated by multiplying the average of the moving range by 3.267:

.

The value 3.267 is taken from the sample size-specific D4 anti-biasing constant for n=2, as given in most textbooks on statistical process control (see, for example, Montgomery [2] :725).

Calculation of individuals control limits

First, the average of the individual values is calculated:

.

Next, the upper control limit (UCL) and lower control limit (LCL) for the individual values (or upper and lower natural process limits) are calculated by adding or subtracting 2.66 times the average moving range to the process average:

.

The value 2.66 is obtained by dividing 3 by the sample size-specific d2 anti-biasing constant for n=2, as given in most textbooks on statistical process control (see, for example, Montgomery [2] :725).

Creation of graphs

Once the averages and limits are calculated, all of the individuals data are plotted serially, in the order in which they were recorded. To this plot is added a line at the average value, x and lines at the UCL and LCL values.

On a separate graph, the calculated ranges MRi are plotted. A line is added for the average value, MR and second line is plotted for the range upper control limit (UCLr).

Analysis

The resulting plots are analyzed as for other control charts, using the rules that are deemed appropriate for the process and the desired level of control. At the least, any points above either upper control limits or below the lower control limit are marked and considered a signal of changes in the underlying process that are worth further investigation.

Potential pitfalls

The moving ranges involved are serially correlated so runs or cycles can show up on the moving average chart that do not indicate real problems in the underlying process. [2] :237

In some cases, it may be advisable to use the median of the moving range rather than its average, as when the calculated range data contains a few large values that may inflate the estimate of the population's dispersion. [7]

Some have alleged that departures in normality in the process output significantly reduce the effectiveness of the charts to the point where it may require control limits to be set based on percentiles of the empirically-determined distribution of the process output [2] :237 although this assertion has been consistently refuted. See Footnote 6.

Many software packages will, given the individuals data, perform all of the needed calculations and plot the results. Care should be taken to ensure that the control limits are correctly calculated, per the above and standard texts on SPC. In some cases, the software's default settings may produce incorrect results; in others, user modifications to the settings could result in incorrect results. Sample data and results are presented by Wheeler for the explicit purpose of testing SPC software. [7] Performing such software validation is generally a good idea with any SPC software.

See also

Related Research Articles

In mathematics and statistics, the arithmetic mean, arithmetic average, or just the mean or average is the sum of a collection of numbers divided by the count of numbers in the collection. The collection is often a set of results from an experiment, an observational study, or a survey. The term "arithmetic mean" is preferred in some mathematics and statistics contexts because it helps distinguish it from other types of means, such as geometric and harmonic.

<span class="mw-page-title-main">Autocorrelation</span> Correlation of a signal with a time-shifted copy of itself, as a function of shift

Autocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variable as a function of the time lag between them. The analysis of autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a periodic signal obscured by noise, or identifying the missing fundamental frequency in a signal implied by its harmonic frequencies. It is often used in signal processing for analyzing functions or series of values, such as time domain signals.

<span class="mw-page-title-main">Student's t-distribution</span> Probability distribution

In probability and statistics, Student's t distribution is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped.

<span class="mw-page-title-main">Box plot</span> Data visualization

In descriptive statistics, a box plot or boxplot is a method for graphically demonstrating the locality, spread and skewness groups of numerical data through their quartiles. In addition to the box on a box plot, there can be lines extending from the box indicating variability outside the upper and lower quartiles, thus, the plot is also called the box-and-whisker plot and the box-and-whisker diagram. Outliers that differ significantly from the rest of the dataset may be plotted as individual points beyond the whiskers on the box-plot. Box plots are non-parametric: they display variation in samples of a statistical population without making any assumptions of the underlying statistical distribution. The spacings in each subsection of the box-plot indicate the degree of dispersion (spread) and skewness of the data, which are usually described using the five-number summary. In addition, the box-plot allows one to visually estimate various L-estimators, notably the interquartile range, midhinge, range, mid-range, and trimean. Box plots can be drawn either horizontally or vertically.

<span class="mw-page-title-main">Spearman's rank correlation coefficient</span> Nonparametric measure of rank correlation

In statistics, Spearman's rank correlation coefficient or Spearman's ρ, named after Charles Spearman and often denoted by the Greek letter (rho) or as , is a nonparametric measure of rank correlation. It assesses how well the relationship between two variables can be described using a monotonic function.

<span class="mw-page-title-main">Control chart</span> Process control tool to determine if a manufacturing process is in a state of control

Control charts are graphical plots used in production control to determine whether quality and manufacturing processes are being controlled under stable conditions. The hourly status is arranged on the graph, and the occurrence of abnormalities is judged based on the presence of data that differs from the conventional trend or deviates from the control limit line. Control charts are classified into Shewhart individuals control chart and CUSUM(CUsUM)(or cumulative sum control chart)(ISO 7870-4).

In statistical inference, specifically predictive inference, a prediction interval is an estimate of an interval in which a future observation will fall, with a certain probability, given what has already been observed. Prediction intervals are often used in regression analysis.

Statistical process control (SPC) or statistical quality control (SQC) is the application of statistical methods to monitor and control the quality of a production process. This helps to ensure that the process operates efficiently, producing more specification-conforming products with less waste scrap. SPC can be applied to any process where the "conforming product" output can be measured. Key tools used in SPC include run charts, control charts, a focus on continuous improvement, and the design of experiments. An example of a process where SPC is applied is manufacturing lines.

<span class="mw-page-title-main">CIE 1931 color space</span> Color space defined by the CIE in 1931

The CIE 1931 color spaces are the first defined quantitative links between distributions of wavelengths in the electromagnetic visible spectrum, and physiologically perceived colors in human color vision. The mathematical relationships that define these color spaces are essential tools for color management, important when dealing with color inks, illuminated displays, and recording devices such as digital cameras. The system was designed in 1931 by the "Commission Internationale de l'éclairage", known in English as the International Commission on Illumination.

This glossary of statistics and probability is a list of definitions of terms and concepts used in the mathematical sciences of statistics and probability, their sub-disciplines, and related fields. For additional related terms, see Glossary of mathematics and Glossary of experimental design.

<span class="texhtml mvar" style="font-style:italic;">x̅</span> and R chart

In statistical process control (SPC), the and R chart is a type of scheme, popularly known as control chart, used to monitor the mean and range of a normally distributed variables simultaneously, when samples are collected at regular intervals from a business or industrial process. It is often used to monitor the variables data but the performance of the and R chart may suffer when the normality assumption is not valid.

Robust statistics are statistics which maintain their properties even if the underlying distributional assumptions are incorrect. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from a parametric distribution. For example, robust methods work well for mixtures of two normal distributions with different standard deviations; under this model, non-robust methods like a t-test work poorly.

p-chart

In statistical quality control, the p-chart is a type of control chart used to monitor the proportion of nonconforming units in a sample, where the sample proportion nonconforming is defined as the ratio of the number of nonconforming units to the sample size, n.

Natural process variation, sometimes just called process variation, is the statistical description of natural fluctuations in process outputs.

In industrial statistics, the X-bar chart is a type of Shewhart control chart that is used to monitor the arithmetic means of successive samples of constant size, n. This type of control chart is used for characteristics that can be measured on a continuous scale, such as weight, temperature, thickness etc. For example, one might take a sample of 5 shafts from production every hour, measure the diameter of each, and then plot, for each sample, the average of the five diameter values on the chart.

Process Window Index (PWI) is a statistical measure that quantifies the robustness of a manufacturing process, e.g. one which involves heating and cooling, known as a thermal process. In manufacturing industry, PWI values are used to calibrate the heating and cooling of soldering jobs while baked in a reflow oven.

In statistics, one-way analysis of variance is a technique to compare whether two or more samples' means are significantly different. This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".

<span class="texhtml mvar" style="font-style:italic;">x̅</span> and s chart

In statistical quality control, the and s chart is a type of control chart used to monitor variables data when samples are collected at regular intervals from a business or industrial process. This is connected to traditional statistical quality control (SQC) and statistical process control (SPC). However, Woodall noted that "I believe that the use of control charts and other monitoring methods should be referred to as “statistical process monitoring,” not “statistical process control (SPC).”"

<span class="mw-page-title-main">EWMA chart</span> Type of control chart in statistical quality control

In statistical quality control, the EWMA chart is a type of control chart used to monitor either variables or attributes-type data using the monitored business or industrial process's entire history of output. While other control charts treat rational subgroups of samples individually, the EWMA chart tracks the exponentially-weighted moving average of all prior sample means. EWMA weights samples in geometrically decreasing order so that the most recent samples are weighted most highly while the most distant samples contribute very little.

Industrial process data validation and reconciliation, or more briefly, process data reconciliation (PDR), is a technology that uses process information and mathematical methods in order to automatically ensure data validation and reconciliation by correcting measurements in industrial processes. The use of PDR allows for extracting accurate and reliable information about the state of industry processes from raw measurement data and produces a single consistent set of data representing the most likely process operation.

References

  1. "Individuals Control Charts". NIST/Sematech Engineering Statistics Handbook]. National Institute of Standards and Technology . Retrieved 2009-08-10.
  2. 1 2 3 4 5 Montgomery, Douglas (2005). Introduction to Statistical Quality Control. Hoboken, New Jersey: John Wiley & Sons, Inc. ISBN   978-0-471-65631-9. OCLC   56729567. Archived from the original on 2008-06-20.
  3. 1 2 Wheeler, Donald J. (2000). Understanding Variation: The Key to Managing Chaos . SPC Press, Inc. ISBN   978-0-945320-53-1.
  4. Wheeler, Donald J. (2009-05-26), "When Can We Trust the Limits on a Process Behavior Chart?", Quality Digest, retrieved 2010-02-08
  5. Wheeler, Donald J. (2009-07-06), "Good Limits from Bad Data", Quality Digest, retrieved 2010-02-08
  6. Wheeler, Donald J. (2009-08-05), "Do You Have Leptokurtophobia?", Quality Digest, retrieved 2010-02-08
  7. 1 2 Wheeler, Donald J. (2010-02-01), "Individuals Charts Done Right and Wrong", Quality Digest, retrieved 2010-02-08