Simple precedence grammar

Last updated

A simple precedence grammar is a context-free formal grammar that can be parsed with a simple precedence parser. [1] The concept was first created in 1964 by Claude Pair, [2] and was later rediscovered, from ideas due to Robert Floyd, by Niklaus Wirth and Helmut Weber who published a paper, entitled EULER: a generalization of ALGOL, and its formal definition, published in 1966 in the Communications of the ACM. [3]

Contents

Formal definition

G = (N, Σ, P, S) is a simple precedence grammar if all the production rules in P comply with the following constraints:

Examples

precedence table

Notes

  1. The Theory of Parsing, Translation, and Compiling: Compiling, Alfred V. Aho, Jeffrey D. Ullman, Prentice–Hall, 1972.
  2. Claude Pair (1964). "Arbres, piles et compilation". Revue française de traitement de l'information., in English Trees, stacks and compiling
  3. Machines, Languages, and Computation , Prentice–Hall, 1978, ISBN   9780135422588, Wirth and Weber [1966] generalized Floyd's precedence grammars, obtaining the simple precedence grammars.

Related Research Articles

<span class="mw-page-title-main">Context-free grammar</span> Type of formal grammar

In formal language theory, a context-free grammar (CFG) is a formal grammar whose production rules are of the form

In formal language theory, a context-free language (CFL) is a language generated by a context-free grammar (CFG).

In formal language theory, a context-free grammar, G, is said to be in Chomsky normal form if all of its production rules are of the form:

In computer science, the Earley parser is an algorithm for parsing strings that belong to a given context-free language, though it may suffer problems with certain nullable grammars. The algorithm, named after its inventor, Jay Earley, is a chart parser that uses dynamic programming; it is mainly used for parsing in computational linguistics. It was first introduced in his dissertation in 1968.

<span class="mw-page-title-main">Formal language</span> Sequence of words formed by specific rules

In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules.

In computer science, LR parsers are a type of bottom-up parser that analyse deterministic context-free languages in linear time. There are several variants of LR parsers: SLR parsers, LALR parsers, Canonical LR(1) parsers, Minimal LR(1) parsers, and GLR parsers. LR parsers can be generated by a parser generator from a formal grammar defining the syntax of the language to be parsed. They are widely used for the processing of computer languages.

In computer science, the Cocke–Younger–Kasami algorithm is a parsing algorithm for context-free grammars published by Itiroo Sakai in 1961. The algorithm is named after some of its rediscoverers: John Cocke, Daniel Younger, Tadao Kasami, and Jacob T. Schwartz. It employs bottom-up parsing and dynamic programming.

In computer science, a recursive descent parser is a kind of top-down parser built from a set of mutually recursive procedures where each such procedure implements one of the nonterminals of the grammar. Thus the structure of the resulting program closely mirrors that of the grammar it recognizes.

Alfred Vaino Aho is a Canadian computer scientist best known for his work on programming languages, compilers, and related algorithms, and his textbooks on the art and science of computer programming.

Top-down parsing in computer science is a parsing strategy where one first looks at the highest level of the parse tree and works down the parse tree by using the rewriting rules of a formal grammar. LL parsers are a type of parser that uses a top-down parsing strategy.

In computer science, an ambiguous grammar is a context-free grammar for which there exists a string that can have more than one leftmost derivation or parse tree, while an unambiguous grammar is a context-free grammar for which every valid string has a unique leftmost derivation or parse tree. Many languages admit both ambiguous and unambiguous grammars, while some languages admit only ambiguous grammars. Any non-empty language admits an ambiguous grammar by taking an unambiguous grammar and introducing a duplicate rule or synonym. A language that only admits ambiguous grammars is called an inherently ambiguous language, and there are inherently ambiguous context-free languages. Deterministic context-free grammars are always unambiguous, and are an important subclass of unambiguous grammars; there are non-deterministic unambiguous grammars, however.

In computer science, parsing reveals the grammatical structure of linear input text, as a first step in working out its meaning. Bottom-up parsing recognizes the text's lowest-level small details first, before its mid-level structures, and leaving the highest-level overall structure to last.

In computer science, a Wirth–Weber relationship between a pair of symbols is necessary to determine if a formal grammar is a simple precedence grammar. In such a case, the simple precedence parser can be used. The relationship is named after computer scientists Niklaus Wirth and Helmut Weber.

In computer science, a simple precedence parser is a type of bottom-up parser for context-free grammars that can be used only by simple precedence grammars.

An operator precedence grammar is a kind of grammar for formal languages.

Indexed languages are a class of formal languages discovered by Alfred Aho; they are described by indexed grammars and can be recognized by nested stack automata.

Indexed grammars are a generalization of context-free grammars in that nonterminals are equipped with lists of flags, or index symbols. The language produced by an indexed grammar is called an indexed language.

In formal language theory, a grammar describes how to form strings from a language's alphabet that are valid according to the language's syntax. A grammar does not describe the meaning of the strings or what can be done with them in whatever context—only their form. A formal grammar is defined as a set of production rules for such strings in a formal language.

LL grammar Type of a context-free grammar

In formal language theory, an LL grammar is a context-free grammar that can be parsed by an LL parser, which parses the input from Left to right, and constructs a Leftmost derivation of the sentence. A language that has an LL grammar is known as an LL language. These form subsets of deterministic context-free grammars (DCFGs) and deterministic context-free languages (DCFLs), respectively. One says that a given grammar or language "is an LL grammar/language" or simply "is LL" to indicate that it is in this class.

A shift-reduce parser is a class of efficient, table-driven bottom-up parsing methods for computer languages and other notations formally defined by a grammar. The parsing methods most commonly used for parsing programming languages, LR parsing and its variations, are shift-reduce methods. The precedence parsers used before the invention of LR parsing are also shift-reduce methods. All shift-reduce parsers have similar outward effects, in the incremental order in which they build a parse tree or call specific output actions.

References