Simulated body fluid

Last updated

A simulated body fluid (SBF) is a solution with an ion concentration close to that of human blood plasma, kept under mild conditions of pH and identical physiological temperature. [1] SBF was first introduced by Kokubo et al. in order to evaluate the changes on a surface of a bioactive glass ceramic. [2] Later, cell culture media (such as DMEM, MEM, α-MEM, etc.), in combination with some methodologies adopted in cell culture, were proposed as an alternative to conventional SBF in assessing the bioactivity of materials. [3]

Contents

Applications

Surface modification of metallic implants

For an artificial material to bond to living bone, the formation of bonelike apatite layer on the surface of an implant is of significant importance. The SBF can be used as an in vitro testing method to study the formation of apatite layer on the surface of implants so as to predict their in vivo bone bioactivity. [4] The consumption of calcium and phosphate ions, present in the SBF solution, results in the spontaneous growth of bone-like apatite nuclei on the surface of biomaterials in vitro. Therefore, the apatite formation on the surface of biomaterials, soaked in the SBF solution, is considered a successful development of novel bioactive materials. [5] The SBF technique for surface modification of metallic implants is usually a time-consuming process, and obtaining uniform apatite layers on substrates takes at least 7 days, with daily refreshing of the SBF solution. [6] Another approach for decreasing the coating time is to concentrate the calcium and phosphate ions in the SBF solution. Enhanced concentration of calcium and phosphate ions in SBF solution accelerates the coating process and, in the meantime, eliminates the need for regular replenishment of the SBF solution.

Gene delivery

An attempt was made to investigate the application of SBF in gene delivery. [7] Calcium phosphate nanoparticles, required for the delivery of plasmid DNA (pDNA) into the nucleus of the cells, were synthesized in a SBF solution and mixed with pDNA. The in vitro studies showed higher gene delivery efficiency for the calcium-phosphate/DNA complexes made of SBF solution than for the complexes prepared in pure water (as control).

Formulation

Ionic concentrations (mM) of blood plasma and proposed SBF formulations [8]
FormulationNa+
K+
Mg2+
Ca2+
Cl
HCO
3
HPO2−
4
SO2−
4
Buffer
Blood plasma [9] 142.05.01.52.5103.027.01.00.5-
Original SBF [10] 142.05.01.52.5148.84.21.00 Tris
Corrected (c-SBF) [11] 142.05.01.52.5147.84.21.00.5 Tris
Tas-SBF [12] 142.05.01.52.5125.027.01.00.5 Tris
Bigi-SBF [9] 141.55.01.52.5124.527.01.00.5 HEPES
Revised (r-SBF) [13] 142.05.01.52.5103.027.01.00.5 HEPES
Modified (m-SBF) [13] 142.05.01.52.5103.010.01.00.5 HEPES
Ionized (i-SBF) [13] 142.05.01.01.6103.027.01.00.5 HEPES
Improved (n-SBF) [14] 142.05.01.52.5103.04.21.00.5 Tris

Related Research Articles

<span class="mw-page-title-main">Biocompatibility</span> Biologically compatible substance

Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing development of insights into how biomaterials interact with the human body and eventually how those interactions determine the clinical success of a medical device. Modern medical devices and prostheses are often made of more than one material so it might not always be sufficient to talk about the biocompatibility of a specific material.

<span class="mw-page-title-main">Hydroxyapatite</span> Naturally occurring mineral form of calcium apatite

Hydroxyapatite, also called hydroxylapatite (HA), is a naturally occurring mineral form of calcium apatite with the formula Ca5(PO4)3(OH), but it is usually written Ca10(PO4)6(OH)2 to denote that the crystal unit cell comprises two entities. Hydroxyapatite is the hydroxyl endmember of the complex apatite group. The OH ion can be replaced by fluoride, chloride or carbonate, producing fluorapatite or chlorapatite. It crystallizes in the hexagonal crystal system. Pure hydroxyapatite powder is white. Naturally occurring apatites can, however, also have brown, yellow, or green colorations, comparable to the discolorations of dental fluorosis.

<span class="mw-page-title-main">Bioglass 45S5</span>

Bioglass 45S5 or calcium sodium phosphosilicate, is a bioactive glass specifically composed of 45 wt% SiO2, 24.5 wt% CaO, 24.5 wt% Na2O, and 6.0 wt% P2O5. Typical applications of Bioglass 45S5 include: bone grafting biomaterials, repair of periodontal defects, cranial and maxillofacial repair, wound care, blood loss control, stimulation of vascular regeneration, and nerve repair.

<span class="mw-page-title-main">Bioactive glass</span>

Bioactive glasses are a group of surface reactive glass-ceramic biomaterials and include the original bioactive glass, Bioglass®. The biocompatibility and bioactivity of these glasses has led them to be used as implant devices in the human body to repair and replace diseased or damaged bones. Most bioactive glasses are silicate based glasses that are degradable in body fluids and can act as a vehicle for delivering ions beneficial for healing. Bioactive glass is differentiated from other synthetic bone grafting biomaterials, in that it is the only one with anti-infective and angiogenic properties.

<span class="mw-page-title-main">Tricalcium phosphate</span> Chemical compound

Tricalcium phosphate (sometimes abbreviated TCP) is a calcium salt of phosphoric acid with the chemical formula Ca3(PO4)2. It is also known as tribasic calcium phosphate and bone phosphate of lime (BPL). It is a white solid of low solubility. Most commercial samples of "tricalcium phosphate" are in fact hydroxyapatite.

In pharmacology, biological activity or pharmacological activity describes the beneficial or adverse effects of a drug on living matter. When a drug is a complex chemical mixture, this activity is exerted by the substance's active ingredient or pharmacophore but can be modified by the other constituents. Among the various properties of chemical compounds, pharmacological/biological activity plays a crucial role since it suggests uses of the compounds in the medical applications. However, chemical compounds may show some adverse and toxic effects which may prevent their use in medical practice.

<span class="mw-page-title-main">Biomaterial</span> Any substance that has been engineered to interact with biological systems for a medical purpose

A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose, either a therapeutic or a diagnostic one. As a science, biomaterials is about fifty years old. The study of biomaterials is called biomaterials science or biomaterials engineering. It has experienced steady and strong growth over its history, with many companies investing large amounts of money into the development of new products. Biomaterials science encompasses elements of medicine, biology, chemistry, tissue engineering and materials science.

<span class="mw-page-title-main">Foreign body reaction</span> Medical condition

A foreign body reaction (FBR) is a typical tissue response to a foreign body within biological tissue. It usually includes the formation of a foreign body granuloma. Tissue-encapsulation of an implant is an example, as is inflammation around a splinter. Foreign body granuloma formation consists of protein adsorption, macrophages, multinucleated foreign body giant cells, fibroblasts, and angiogenesis. It has also been proposed that the mechanical property of the interface between an implant and its surrounding tissues is critical for the host response.

Biomimetic materials are materials developed using inspiration from nature. This may be useful in the design of composite materials. Natural structures have inspired and innovated human creations. Notable examples of these natural structures include: honeycomb structure of the beehive, strength of spider silks, bird flight mechanics, and shark skin water repellency. The etymological roots of the neologism biomimetic derive from Greek, since bios means "life" and mimetikos means "imitative",

Amorphous calcium phosphate (ACP) is a glassy solid that is formed from the chemical decomposition of a mixture of dissolved phosphate and calcium salts (e.g. (NH4)2HPO4 + Ca(NO3)2). The resulting amorphous mixture consists mostly of calcium and phosphate, but also contains varying amounts of water and hydrogen and hydroxide ions, depending on the synthesis conditions. Such mixtures are also known as calcium phosphate cement.

<span class="mw-page-title-main">Bioceramic</span>

Bioceramics and bioglasses are ceramic materials that are biocompatible. Bioceramics are an important subset of biomaterials. Bioceramics range in biocompatibility from the ceramic oxides, which are inert in the body, to the other extreme of resorbable materials, which are eventually replaced by the body after they have assisted repair. Bioceramics are used in many types of medical procedures. Bioceramics are typically used as rigid materials in surgical implants, though some bioceramics are flexible. The ceramic materials used are not the same as porcelain type ceramic materials. Rather, bioceramics are closely related to either the body's own materials or are extremely durable metal oxides.

An alginate dressing is a natural wound dressing derived from carbohydrate sources released by clinical bacterial species, in the same manner as biofilm formation. These types of dressings are best used on wounds that have a large amount of exudate. They may be used on full-thickness burns, surgical wounds, split-thickness graft donor sites, Mohs surgery defects, refractory decubiti, and chronic ulcers. They can also be applied onto dry wounds after normal saline is first applied to the site of application.

Adsorption is the accumulation and adhesion of molecules, atoms, ions, or larger particles to a surface, but without surface penetration occurring. The adsorption of larger biomolecules such as proteins is of high physiological relevance, and as such they adsorb with different mechanisms than their molecular or atomic analogs. Some of the major driving forces behind protein adsorption include: surface energy, intermolecular forces, hydrophobicity, and ionic or electrostatic interaction. By knowing how these factors affect protein adsorption, they can then be manipulated by machining, alloying, and other engineering techniques to select for the most optimal performance in biomedical or physiological applications.

<span class="mw-page-title-main">Surface modification of biomaterials with proteins</span>

Biomaterials are materials that are used in contact with biological systems. Biocompatibility and applicability of surface modification with current uses of metallic, polymeric and ceramic biomaterials allow alteration of properties to enhance performance in a biological environment while retaining bulk properties of the desired device.

<span class="mw-page-title-main">Titanium biocompatibility</span>

Titanium was first introduced into surgeries in the 1950s after having been used in dentistry for a decade prior. It is now the metal of choice for prosthetics, internal fixation, inner body devices, and instrumentation. Titanium is used from head to toe in biomedical implants. One can find titanium in neurosurgery, bone conduction hearing aids, false eye implants, spinal fusion cages, pacemakers, toe implants, and shoulder/elbow/hip/knee replacements along with many more. The main reason why titanium is often used in the body is due to titanium's biocompatibility and, with surface modifications, bioactive surface. The surface characteristics that affect biocompatibility are surface texture, steric hindrance, binding sites, and hydrophobicity (wetting). These characteristics are optimized to create an ideal cellular response. Some medical implants, as well as parts of surgical instruments are coated with titanium nitride (TiN).

The in vivo bioreactor is a tissue engineering paradigm that uses bioreactor methodology to grow neotissue in vivo that augments or replaces malfunctioning native tissue. Tissue engineering principles are used to construct a confined, artificial bioreactor space in vivo that hosts a tissue scaffold and key biomolecules necessary for neotissue growth. Said space often requires inoculation with pluripotent or specific stem cells to encourage initial growth, and access to a blood source. A blood source allows for recruitment of stem cells from the body alongside nutrient delivery for continual growth. This delivery of cells and nutrients to the bioreactor eventually results in the formation of a neotissue product. 

In vitro models for calcification may refer to systems that have been developed in order to reproduce, in the best possible way, the calcification process that tissues or biomaterials undergo inside the body. The aim of these systems is to mimic the high levels of calcium and phosphate present in the blood and measure the extent of the crystal's deposition. Different variations can include other parameters to increase the veracity of these models, such as flow, pressure, compliance and resistance. All the systems have different limitations that have to be acknowledged regarding the operating conditions and the degree of representation. The rational of using such is to partially replace in vivo animal testing, whilst rendering much more controllable and independent parameters compared to an animal model.

Treena Livingston Arinzeh is Professor of Biomedical Engineering at Columbia University in New York, New York, joining in 2022. She was formerly a Distinguished Professor in Biomedical Engineering at the New Jersey Institute of Technology in Newark, New Jersey. She is known for her research on adult stem-cell therapy. Arinzeh takes part in the American Chemical Society's Project Seeds program, opening up her lab for high school students from economically disadvantaged backgrounds for summer internships.

Sarah Harriet Cartmell is a British biomaterials scientist and Professor of Bioengineering at the University of Manchester. She specializes on the potential use of electrical regimes to influence cellular activity for orthopaedic tissue engineering applications.

Bioactive glass S53P4 (BAG-S53P4) is a biomaterial consisting of sodium, silicate, calcium and phosphate. S53P4 is osteoconductive and also osteoproductive in the promotion, migration, replication and differentiation of osteogenic cells and their matrix production. In other words, it facilitates bone formation and regeneration (osteostimulation). S53P4 has been proven to also naturally inhibit the bacterial growth of up to 50 clinically relevant bacteria strains.

References

  1. Kokubo, T. (1991). "Bioactive glass ceramics: properties and applications". Biomaterials. 12 (2): 155–163. doi:10.1016/0142-9612(91)90194-F.
  2. Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. (1990). "Solutions able to reproduce in vivo surface-structure changes in bioactive glass–ceramic A–W". Journal of Biomedical Materials Research. 24: 721–734. doi:10.1002/jbm.820240607.
  3. Lee, J.; Leng, Y.; Chow, K.; Ren, F.; Ge, X.; Wang, K.; Lu, X. (2011). "Cell culture medium as an alternative to conventional simulated body fluid". Acta Biomaterialia. 7 (6): 2615–22. doi:10.1016/j.actbio.2011.02.034. PMID   21356333.
  4. Chen, Xiaobo; Nouri, Alireza; Li, Yuncang; Lin, Jiangoa; Hodgson, Peter D.; Wen, Cuie (2008). "Effect of Surface Roughness of Ti, Zr and TiZr on Apatite Precipitation from Simulated Body Fluid". Biotechnology and Bioengineering. 101 (2): 378–387. doi:10.1002/bit.21900. PMID   18454499.
  5. Kokubo, T.; Takadama, H. (2006). "How useful is SBF in predicting in vivo bone bioactivity?". Biomaterials. 27 (15): 2907–2915. doi:10.1016/j.biomaterials.2006.01.017. PMID   16448693.
  6. Li, P.; Ducheyne, P. (1998). "Quasi-biological apatite film induced by titanium in a simulated body fluid". Journal of Biomedical Materials Research. 41 (3): 341–348. doi:10.1002/(SICI)1097-4636(19980905)41:3<341::AID-JBM1>3.0.CO;2-C.
  7. Nouri, Alireza; Castro, Rita; Santos, Jose L.; Fernandes, Cesar; Rodrigues, J.; Tomás, H. (2012). "Calcium phosphate-mediated gene delivery using simulated body fluid (SBF)". International Journal of Pharmaceutics. 434 (1–2): 199–208. doi:10.1016/j.ijpharm.2012.05.066. PMID   22664458.
  8. Yilmaz, Bengi & Evis, Zafer (October 2016). "Chapter 1: Biomimetic coatings of calcium phosphates on titanium alloys". In Webster, Thomas & Yazici, Hilal (eds.). Biomedical Nanomaterials: From Design To Implementation. The Institution of Engineering and Technology. pp. 3–14. doi:10.1049/PBHE004E_ch1. ISBN   9781849199650.
  9. 1 2 Bigi, Adriana; Boanini, Elisa; Bracci, Barbara; Facchini, Alessandro; Panzavolta, Silvia; Segatti, Francesco; Sturba, Luigina (2005). "Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method". Biomaterials. 26 (19): 4085–4089. doi:10.1016/j.biomaterials.2004.10.034. ISSN   0142-9612. PMID   15664635.
  10. Kokubo, Tadashi; Takadama, Hiroaki (2006). "How useful is SBF in predicting in vivo bone bioactivity?". Biomaterials. 27 (15): 2907–2915. doi:10.1016/j.biomaterials.2006.01.017. ISSN   0142-9612. PMID   16448693.
  11. Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi (2010). "Apatite formation on anodized Ti-6Al-4V alloy in simulated body fluid". Metals and Materials International. 16 (3): 407–412. doi:10.1007/s12540-010-0610-x. ISSN   1598-9623.
  12. Cüneyt Tas, A (2000). "Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids". Biomaterials. 21 (14): 1429–1438. doi:10.1016/S0142-9612(00)00019-3. ISSN   0142-9612.
  13. 1 2 3 Oyane, Ayako; Onuma, Kazuo; Ito, Atsuo; Kim, Hyun-Min; Kokubo, Tadashi; Nakamura, Takashi (2003). "Formation and growth of clusters in conventional and new kinds of simulated body fluids". Journal of Biomedical Materials Research. 64A (2): 339–348. doi:10.1002/jbm.a.10426. ISSN   0021-9304. PMID   12522821.
  14. Takadama, Hiroaki; Hashimoto, Masami; Mizuno, Mineo; Kokubo, Tadashi (2004). "Round-Robin Test of SBF for In Vitro Measurement of Apatite-Forming Ability of Synthetic Materials". Phosphorus Research Bulletin. 17: 119–125. doi: 10.3363/prb1992.17.0_119 . ISSN   0918-4783.