In mathematics, the simultaneous uniformization theorem, proved by Bers (1960), states that it is possible to simultaneously uniformize two different Riemann surfaces of the same genus using a quasi-Fuchsian group of the first kind.
The quasi-Fuchsian group is essentially uniquely determined by the two Riemann surfaces, so the space of marked quasi-Fuchsian group of the first kind of some fixed genus g can be identified with the product of two copies of Teichmüller space of the same genus.
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.
In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces.
In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of orientation-preserving isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces. There are some variations of the definition: sometimes the Fuchsian group is assumed to be finitely generated, sometimes it is allowed to be a subgroup of PGL(2,R), and sometimes it is allowed to be a Kleinian group which is conjugate to a subgroup of PSL(2,R).
In mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space H3. The latter, identifiable with PSL(2, C), is the quotient group of the 2 by 2 complex matrices of determinant 1 by their center, which consists of the identity matrix and its product by −1. PSL(2, C) has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball B3 in R3. The group of Möbius transformations is also related as the non-orientation-preserving isometry group of H3, PGL(2, C). So, a Kleinian group can be regarded as a discrete subgroup acting on one of these spaces.
In mathematics, a Fuchsian model is a representation of a hyperbolic Riemann surface R as a quotient of the upper half-plane H by a Fuchsian group. Every hyperbolic Riemann surface admits such a representation. The concept is named after Lazarus Fuchs.
In mathematics, the Teichmüller space of a (real) topological surface , is a space that parametrizes complex structures on up to the action of homeomorphisms that are isotopic to the identity homeomorphism. Teichmüller spaces are named after Oswald Teichmüller.
Hilbert's twenty-second problem is the penultimate entry in the celebrated list of 23 Hilbert problems compiled in 1900 by David Hilbert. It entails the uniformization of analytic relations by means of automorphic functions.
In mathematical complex analysis, a quasiconformal mapping, introduced by Grötzsch (1928) and named by Ahlfors (1935), is a homeomorphism between plane domains which to first order takes small circles to small ellipses of bounded eccentricity.
Lipman Bers was a Latvian-American mathematician, born in Riga, who created the theory of pseudoanalytic functions and worked on Riemann surfaces and Kleinian groups. He was also known for his work in human rights activism.
In algebraic geometry, a Zariski–Riemann space or Zariski space of a subring k of a field K is a locally ringed space whose points are valuation rings containing k and contained in K. They generalize the Riemann surface of a complex curve.
In the mathematical theory of Kleinian groups, a quasi-Fuchsian group is a Kleinian group whose limit set is contained in an invariant Jordan curve. If the limit set is equal to the Jordan curve the quasi-Fuchsian group is said to be of type one, and otherwise it is said to be of type two. Some authors use "quasi-Fuchsian group" to mean "quasi-Fuchsian group of type 1", in other words the limit set is the whole Jordan curve. This terminology is incompatible with the use of the terms "type 1" and "type 2" for Kleinian groups: all quasi-Fuchsian groups are Kleinian groups of type 2, as their limit sets are proper subsets of the Riemann sphere. The special case when the Jordan curve is a circle or line is called a Fuchsian group, named after Lazarus Fuchs by Henri Poincaré.
In the mathematical theory of Kleinian groups, the Ahlfors finiteness theorem describes the quotient of the domain of discontinuity by a finitely generated Kleinian group. The theorem was proved by Lars Ahlfors, apart from a gap that was filled by Greenberg (1967).
In the mathematical theory of Kleinian groups, Bers slices and Maskit slices, named after Lipman Bers and Bernard Maskit, are certain slices through the moduli space of Kleinian groups.
In hyperbolic geometry, Thurston's double limit theorem gives condition for a sequence of quasi-Fuchsian groups to have a convergent subsequence. It was introduced in Thurston and is a major step in Thurston's proof of the hyperbolization theorem for the case of manifolds that fiber over the circle.
Irwin Kra is an American mathematician, who works on the function theory in complex analysis.
In mathematics, p-adic Teichmüller theory describes the "uniformization" of p-adic curves and their moduli, generalizing the usual Teichmüller theory that describes the uniformization of Riemann surfaces and their moduli. It was introduced and developed by Shinichi Mochizuki.
Harry Ernest Rauch was an American mathematician, who worked on complex analysis and differential geometry. He was born in Trenton, New Jersey, and died in White Plains, New York.
Clifford John Earle, Jr. was an American mathematician who specialized in complex variables and Teichmüller spaces.
Ravindra Shripad Kulkarni is an Indian mathematician, specializing in differential geometry. He is known for the Kulkarni–Nomizu product.
Maurice Haskell Heins was an American mathematician, specializing in complex analysis and harmonic analysis.