A single-use bioreactor or disposable bioreactor is a bioreactor with a disposable bag instead of a culture vessel. Typically, this refers to a bioreactor in which the lining in contact with the cell culture will be plastic, and this lining is encased within a more permanent structure (typically, either a rocker or a cuboid or cylindrical steel support). Commercial single-use bioreactors have been available since the end of the 1990s[ citation needed ] and are now made by several well-known producers (See below) .
Single-use bioreactors are widely used in the field of mammalian cell culture and are now rapidly replacing conventional bioreactors.
Instead of a culture vessel made from stainless steel or glass, a single-use bioreactor is equipped with a disposable bag. The disposable bag is usually made of a three-layer plastic foil. One layer is made from Polyethylene terephthalate or LDPE to provide mechanical stability. A second layer made using PVA or PVC acts as a gas barrier. Finally, a contact layer is made from PVA or PP. [1] For medical applications the single-use materials that contact the product must be certified by the European Medicines Agency or similar authorities responsible for other regions.
In general there are two different approaches for constructing single-use bioreactors, differing in the means used to agitate the culture medium.
Some single-use bioreactors use stirrers like conventional bioreactors, but with stirrers that are integrated into the plastic bag. The closed bag and the stirrer are pre-sterilized. In use the bag is mounted in the bioreactor and the stirrer is connected to a driver mechanically or magnetically.
Other single-use bioreactors are agitated by a rocking motion. This type of bioreactor does not need any mechanical agitators inside the single-use bag.,. [2] [3]
Both the stirred and the rocking motion single-use bioreactors are used up to a scale of 1000 Liters volume.
Several variations on these two methods exist. The Kuhner Shaker, [4] was originally designed for media preparation, but is also useful for cell cultivation. The PBS Biotech Air Wheel technology uses buoyancy from the air feed to provide rotational power to a stirrer.
Measurement and control of a cell culture process using a single-use bioreactor is challenging, as the bag in which the cultivation will be performed is a closed and pre-sterilized system. Sensors for measuring the temperature, conductivity, glucose, oxygen, or pressure must be built into the bag during the manufacturing prior to sterilization. The sensors can’t be installed prior to use of the bioreactor as in the conventional case. Consequently, some challenges must be taken into consideration. The bag is assembled, delivered and stored dry, with the consequence that the usual pH-electrodes can not be used. Calibration or additional assembly is not possible. These constraints have led to the development of preconfigured bags with new types of analytical probes. The pH value can be measured using a patch that is just a few millimeters in size. This patch consists of a protecting membrane with a pH-sensitive dye behind it. Changing pH in the culture medium changes the pH, and the color, of the dye. The color change can be detected with a laser external to the bag. This and other methods of non-invasive measurement have been developed for single-use bioreactors.
Decreasing product contact with parts/systems decreases qualification and validation times when changing from one drug process to another. [5] Since the biopharmaceutical manufacturing process includes many steps other than just the use of bioreactors, single-use technologies are utilized throughout the manufacturing process due to its advantages. Single-use bioprocessing (SUS) [note 1] steps available are: media and buffer preparation, cell harvesting, filtration, purification and virus inactivation. The major innovation of single-use technologies in this area of processing has been in the construction of 2D/3D bags and tubing wielding- reducing the contact of product to non-single-use parts/systems. [6]
Compared with conventional bioreactor systems, the single-use solution has some advantages. Application of single-use technologies reduces cleaning and sterilization demands. Some estimates show cost savings of more than 60% with single use systems compared to fixed asset stainless steel bioreactors. In pharmaceutical production, complex qualification and validation procedures can be made easier, and will finally lead to significant cost reductions. [5] The application of single-use bioreactors reduces the risk of cross contamination and enhances the biological and process safety. Single-use applications are especially suitable for any kind of biopharmaceutical product.
A major reason single-use bioprocessing (SUS) [note 1] is popular with pharmaceutical companies and contract manufacturing organizations (CMOs) is because a process area/facility can quickly change from one process (drug product) to another. This is due to, as stated previously, reduced qualification and validation procedures. This increases productivity and costs due to less resources and time being required for changing from one process to another. Since drugs in the clinical and R&D stage (pre-commercialized drugs) are not needed on the same scale of most commercial drugs, they are often produced in single-use suites so the same area/facility can quickly switch from one drug to another. Often when drug becomes commercialized the advantages of SUSs decrease since one area/facility can be dedicated to one product- essentially eliminating the need for flexibility which is the major advantage of SUSs. [6] It is estimated that ≥85% of pre-commercial drug product production utilizes single-use systems-based manufacturing. [7] Stainless steal reusable systems become more advantageous as the demand for the drug product and batch size increases- often a result of the commercialization of a drug. This is not always the case, as commercialized drugs can be found being produced in single-use suits/facilities.
SUSs contain fewer parts compared with conventional biopharmaceutical manufacturing systems, so the initial and maintenance costs are reduced. [6]
Limiting factor for the use of some single-use bioreactors is the achievable oxygen transfer, represented by the specific mass transfer coefficient (kL) for the specific phase area (a), resulting in the volumetric oxygen mass transfer coefficient (kLa). Theoretically this can be influenced by a higher energy input (increasing the stirrer speed or the rocking frequency). However, since single-use bioreactors are mainly used for cell culturing, the energy input is limited by the delicate nature of cells. Higher energy input leads to higher shear forces causing the risk of cell damages. [8] Single-use bioreactors are currently available with up to a volume of about 1000 L; that’s why scale up is limited compared to conventional bioreactors. However, a handful of suppliers are now delivering units at the 2,000 liter scale and some suppliers (Sartorius, Xcellerex, Thermo Scientific HyClone and PBS Biotech) are providing a family of single-use bioreactors from bench-top to full-scale production. Three challenges exist for faster and greater single use bioreactor adoption 1) higher quality and lower cost disposable bags and containers, 2) more reusable and disposable sensors and probes that can provide high quality analytics including real-time cell culture level data points, and 3) a family of bioreactors from lab to production that has full scale-up of the bioprocess. Suppliers are working to improve plastic bag materials and performance and also to develop a broader range of sensors and probes that provide scientists greater insight to cell density, quality and other metrics needed to improve yields and product efficacy. New perfusion devices are also becoming popular for certain cell culture applications.
Environmental aspects for single-use bioreactors are important to consider due to the amount of disposable material used compared with conventional bioreactors. A complete life cycle assessment comparing single-use bioreactors and conventional bioreactors does not exist, but many ecological reasons are supporting the concept of single-use bioreactors. For a complete life cycle assessment not only the manufacturing, but also the repeated use need to be considered. Even the main part of a single-use bioreactor is not a disposable, but will be continuously reused. The plastic bag that is used instead of a culture vessel is a disposable, as well as all the integrated sub-assemblies like sensors, tubing, and stirrers. The bag and all its parts are mainly made from plastics that are derived from petroleum. Current recycling concepts are mainly focused on incineration, to recover the energy originated from the petroleum as heat and electricity. Most of the petroleum would be burned anyway in power plants or automobiles (citation required). Burning of the single use components of bioreactors creates a detour through biochemical engineering during their life cycle that does not have a big influence. The making of conventional culture vessels form stainless steel or glass requires more energy than making plastic bags. Using conventional bioreactors the culture vessel need to be cleaned and sterilized after each fermentation. Cleaning requires large amounts of water, in addition to acids, alkali and detergents. Sterilization with steam at 121 degrees C and 1 bar pressure requires large quantities of energy and large amounts of distilled water. This distilled water (often called "water for injection" in pharmaceutical nomenclature) must be prepared by expending a large amount of energy as well. A comparison of the life cycle assessment of conventional and single-use bioreactors looks much more favorable for the single-use bioreactors as expected before. According to a report of A. Sinclair et al. [9] Single-use bioreactors will help to save 30% of electrical energy for operation, 62% of the energy input for the production of the system, 87% of water and finally 95% of detergents, all compared to conventional bioreactors.
Biochemical engineering, also known as bioprocess engineering, is a field of study with roots stemming from chemical engineering and biological engineering. It mainly deals with the design, construction, and advancement of unit processes that involve biological organisms or organic molecules and has various applications in areas of interest such as biofuels, food, pharmaceuticals, biotechnology, and water treatment processes. The role of a biochemical engineer is to take findings developed by biologists and chemists in a laboratory and translate that to a large-scale manufacturing process.
A bioreactor is any manufactured device or system that supports a biologically active environment. In one case, a bioreactor is a vessel in which a chemical process is carried out which involves organisms or biochemically active substances derived from such organisms. This process can either be aerobic or anaerobic. These bioreactors are commonly cylindrical, ranging in size from litres to cubic metres, and are often made of stainless steel. It may also refer to a device or system designed to grow cells or tissues in the context of cell culture. These devices are being developed for use in tissue engineering or biochemical/bioprocess engineering.
Pharming, a portmanteau of farming and pharmaceutical, refers to the use of genetic engineering to insert genes that code for useful pharmaceuticals into host animals or plants that would otherwise not express those genes, thus creating a genetically modified organism (GMO). Pharming is also known as molecular farming, molecular pharming, or biopharming.
A water bottle is a container that is used to hold liquids, mainly water, for the purpose of transporting a drink while travelling or while otherwise away from a supply of potable water.
A bioprocess is a specific process that uses complete living cells or their components to obtain desired products.
A bedpan or bed pan is a device used as a receptacle for the urine and/or feces of a person who is confined to a bed and therefore not able to use a toilet or chamber pot.
A biopharmaceutical, also known as a biological medical product, or biologic, is any pharmaceutical drug product manufactured in, extracted from, or semisynthesized from biological sources. Different from totally synthesized pharmaceuticals, they include vaccines, whole blood, blood components, allergenics, somatic cells, gene therapies, tissues, recombinant therapeutic protein, and living medicines used in cell therapy. Biologics can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances, or may be living cells or tissues. They are isolated from living sources—human, animal, plant, fungal, or microbial. They can be used in both human and animal medicine.
A Spinner is a type of bioreactor which features an impeller, stirrer or similar device to agitate the contents. The vessels are usually made out of glass or stainless steel with port holes to accommodate sensors, Medium input or gas flow.
In chemistry, fine chemicals are complex, single, pure chemical substances, produced in limited quantities in multipurpose plants by multistep batch chemical or biotechnological processes. They are described by exacting specifications, used for further processing within the chemical industry and sold for more than $10/kg. The class of fine chemicals is subdivided either on the basis of the added value, or the type of business transaction, namely standard or exclusive products.
Clean-in-place (CIP) is an automated method of cleaning the interior surfaces of pipes, vessels, equipment, filters and associated fittings, without major disassembly. CIP is commonly used for equipment such as piping, tanks, and fillers. CIP employs turbulent flow through piping, and/or spray balls for tanks or vessels. In some cases, CIP can also be accomplished with fill, soak and agitate.
A photobioreactor (PBR) refers to any cultivation system designed for growing photoautotrophic organisms using artificial light sources or solar light to facilitate photosynthesis. Photobioreactors are typically used to cultivate microalgae, cyanobacteria, and some mosses. Photobioreactors can be open systems, such as raceway ponds, which rely upon natural sources of light and carbon dioxide. Closed photobioreactors are flexible systems that can be controlled to the physiological requirements of the cultured organism, resulting in optimal growth rates and purity levels. Photobioreactors are typically used for the cultivation of bioactive compounds for biofuels, pharmaceuticals, and other industrial uses.
Fed-batch culture is, in the broadest sense, defined as an operational technique in biotechnological processes where one or more nutrients (substrates) are fed (supplied) to the bioreactor during cultivation and in which the product(s) remain in the bioreactor until the end of the run. An alternative description of the method is that of a culture in which "a base medium supports initial cell culture and a feed medium is added to prevent nutrient depletion". It is also a type of semi-batch culture. In some cases, all the nutrients are fed into the bioreactor. The advantage of the fed-batch culture is that one can control concentration of fed-substrate in the culture liquid at arbitrarily desired levels.
Merck Millipore was the brand used by Merck Group's global life science business until 2015 when the company re-branded. It was formed when Merck acquired the Millipore Corporation in 2010. Merck is a supplier to the life science industry. The Millipore Corporation was founded in 1954, and listed among the S&P 500 since the early 1990s, as an international biosciences company which makes micrometer pore-size filters and tests. In 2015, Merck acquired Sigma-Aldrich and merged it with Merck Millipore. In the United States and Canada, the life science business is now known as MilliporeSigma.
Aseptic processing is a processing technique wherein commercially thermally sterilized liquid products are packaged into previously sterilized containers under sterile conditions to produce shelf-stable products that do not need refrigeration. Aseptic processing has almost completely replaced in-container sterilization of liquid foods, including milk, fruit juices and concentrates, cream, yogurt, salad dressing, liquid egg, and ice cream mix. There has been an increasing popularity for foods that contain small discrete particles, such as cottage cheese, baby foods, tomato products, fruit and vegetables, soups, and rice desserts.
Sartorius AG is an international pharmaceutical and laboratory equipment supplier, covering the segments of Bioprocess Solutions and Lab Products & Services. In September 2021, Sartorius has been admitted to the DAX, Germany's largest stock market index. As a leading partner to the biopharmaceutical research and industry, Sartorius supports its customers in the development and production of biotech drugs and vaccines - from the initial idea in the laboratory to commercial production. Sartorius conducts its operating business in the two divisions Bioprocess Solutions and Lab Products&Services. The divisions bundle their respective businesses according to the same application areas and customer groups. The divisions share some of the infrastructure and central services.
ASME BPE is an international Standard developed as an aid for the design and construction of equipment intended for use in the manufacturing of biopharmaceuticals. The standard is approved as an American National Standard by the ASME Board of Pressure Technologies. The first edition of this Standard was approved as an American National Standard on May 20, 1997. The most recent edition was approved by ANSI on March 21, 2022.
Aseptic sampling is the process of aseptically withdrawing materials used in biopharmaceutical processes for analysis so as not contaminate or alter the sample or the source of the sample. Aseptic samples are drawn throughout the entire biopharmaceutical process. Analysis of the sample includes sterility, cell count/cell viability, metabolites, gases, osmolality and more.
The Golden LEAF Biomanufacturing Training and Education Center (BTEC) is a multidisciplinary instructional center at North Carolina State University that provides education and training to develop skilled professionals for the biomanufacturing industry. Biomanufacturing refers to the use of living organisms or other biological material to produce commercially viable products. Examples include therapeutic proteins, monoclonal antibodies, and vaccines for medical use; amino acids and enzymes for food manufacturing; and biofuels and biochemicals for industrial applications. BTEC provides hands-on education and training in bioprocessing concepts and biomanufacturing methods that comply with cGMP (current Good Manufacturing Practice), a set regulations published by the United States Food and Drug Administration (FDA).
Bioproduction is the production of biologics-based therapeutic drugs including protein-based therapeutics, vaccines, gene therapies as well as cell therapies; drugs so complex they can only be made in living systems or indeed are a living system. In practice, 'bioproduction' has become loosely synonymous with 'bioprocessing' as a way to describe the manufacturing process using, cell culture, chromatography, formulation and related analytical testing for large molecule drugs, vaccines and cellular therapies. Many combinations of reactor types and culture modes are now available for use in bioproduction: e.g., pharming, rocking wave-agitated bag batch, stirred-tank or air-lift fed-batch, and hollow-fiber or spin-filter perfusion. No single production format is inherently superior; that determination depends on many manufacturing capabilities, requirements, and goals. New cell lines, concerns about product quality and safety, emerging biosimilars, worldwide demand for vaccines, and cellular medicine drive new innovative solutions in bioproduction.
Biomanufacturing is a type of manufacturing or biotechnology that utilizes biological systems to produce commercially important biomaterials and biomolecules for use in medicines, food and beverage processing, and industrial applications. Biomanufacturing products are recovered from natural sources, such as blood, or from cultures of microbes, animal cells, or plant cells grown in specialized equipment. The cells used during the production may have been naturally occurring or derived using genetic engineering techniques.