Singular perturbation

Last updated

In mathematics, a singular perturbation problem is a problem containing a small parameter that cannot be approximated by setting the parameter value to zero. More precisely, the solution cannot be uniformly approximated by an asymptotic expansion

Contents

as . Here is the small parameter of the problem and are a sequence of functions of of increasing order, such as . This is in contrast to regular perturbation problems, for which a uniform approximation of this form can be obtained. Singularly perturbed problems are generally characterized by dynamics operating on multiple scales. Several classes of singular perturbations are outlined below.

The term "singular perturbation" was coined in the 1940s by Kurt Otto Friedrichs and Wolfgang R. Wasow. [1]

Methods of analysis

A perturbed problem whose solution can be approximated on the whole problem domain, whether space or time, by a single asymptotic expansion has a regular perturbation. Most often in applications, an acceptable approximation to a regularly perturbed problem is found by simply replacing the small parameter by zero everywhere in the problem statement. This corresponds to taking only the first term of the expansion, yielding an approximation that converges, perhaps slowly, to the true solution as decreases. The solution to a singularly perturbed problem cannot be approximated in this way: As seen in the examples below, a singular perturbation generally occurs when a problem's small parameter multiplies its highest operator. Thus naively taking the parameter to be zero changes the very nature of the problem. In the case of differential equations, boundary conditions cannot be satisfied; in algebraic equations, the possible number of solutions is decreased.

Singular perturbation theory is a rich and ongoing area of exploration for mathematicians, physicists, and other researchers. The methods used to tackle problems in this field are many. The more basic of these include the method of matched asymptotic expansions and WKB approximation for spatial problems, and in time, the Poincaré–Lindstedt method, the method of multiple scales and periodic averaging. The numerical methods for solving singular perturbation problems are also very popular. [2]

For books on singular perturbation in ODE and PDE's, see for example Holmes, Introduction to Perturbation Methods, [3] Hinch, Perturbation methods [4] or Bender and Orszag, Advanced Mathematical Methods for Scientists and Engineers. [5]

Examples of singular perturbative problems

Each of the examples described below shows how a naive perturbation analysis, which assumes that the problem is regular instead of singular, will fail. Some show how the problem may be solved by more sophisticated singular methods.

Vanishing coefficients in ordinary differential equations

Differential equations that contain a small parameter that premultiplies the highest order term typically exhibit boundary layers, so that the solution evolves in two different scales. For example, consider the boundary value problem

Its solution when is the solid curve shown below. Note that the solution changes rapidly near the origin. If we naively set , we would get the solution labelled "outer" below which does not model the boundary layer, for which x is close to zero. For more details that show how to obtain the uniformly valid approximation, see method of matched asymptotic expansions.

Matching (perturbation).jpg

Examples in time

An electrically driven robot manipulator can have slower mechanical dynamics and faster electrical dynamics, thus exhibiting two time scales. In such cases, we can divide the system into two subsystems, one corresponding to faster dynamics and other corresponding to slower dynamics, and then design controllers for each one of them separately. Through a singular perturbation technique, we can make these two subsystems independent of each other, thereby simplifying the control problem.

Consider a class of system described by the following set of equations:

with . The second equation indicates that the dynamics of is much faster than that of . A theorem due to Tikhonov [6] states that, with the correct conditions on the system, it will initially and very quickly approximate the solution to the equations

on some interval of time and that, as decreases toward zero, the system will approach the solution more closely in that same interval. [7]

Examples in space

In fluid mechanics, the properties of a slightly viscous fluid are dramatically different outside and inside a narrow boundary layer. Thus the fluid exhibits multiple spatial scales.

Reaction–diffusion systems in which one reagent diffuses much more slowly than another can form spatial patterns marked by areas where a reagent exists, and areas where it does not, with sharp transitions between them. In ecology, predator-prey models such as

where is the prey and is the predator, have been shown to exhibit such patterns. [8]

Algebraic equations

Consider the problem of finding all roots of the polynomial . In the limit , this cubic degenerates into the quadratic with roots at . Substituting a regular perturbation series

in the equation and equating equal powers of only yields corrections to these two roots:

To find the other root, singular perturbation analysis must be used. We must then deal with the fact that the equation degenerates into a quadratic when we let tend to zero, in that limit one of the roots escapes to infinity. To prevent this root from becoming invisible to the perturbative analysis, we must rescale to keep track with this escaping root so that in terms of the rescaled variables, it doesn't escape. We define a rescaled variable where the exponent will be chosen such that we rescale just fast enough so that the root is at a finite value of in the limit of to zero, but such that it doesn't collapse to zero where the other two roots will end up. In terms of we have

We can see that for the is dominated by the lower degree terms, while at it becomes as dominant as the term while they both dominate the remaining term. This point where the highest order term will no longer vanish in the limit to zero by becoming equally dominant to another term, is called significant degeneration; this yields the correct rescaling to make the remaining root visible. This choice yields

Substituting the perturbation series

yields

We are then interested in the root at ; the double root at are the two roots that we've found above that collapse to zero in the limit of an infinite rescaling. Calculating the first few terms of the series then yields

Related Research Articles

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle step that breaks the problem into "solvable" and "perturbative" parts. In perturbation theory, the solution is expressed as a power series in a small parameter . The first term is the known solution to the solvable problem. Successive terms in the series at higher powers of usually become smaller. An approximate 'perturbation solution' is obtained by truncating the series, usually by keeping only the first two terms, the solution to the known problem and the 'first order' perturbation correction.

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.

<span class="mw-page-title-main">Hooke's law</span> Physical law: force needed to deform a spring scales linearly with distance

In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

<span class="mw-page-title-main">Yang–Mills theory</span> Physical theory unifying the electromagnetic, weak and strong interactions

The phrase Yang–Mills theory means both a quantum field theory for nuclear binding devised by Chen Ning Yang and Robert Mills in 1953 and the class of similar theories. In mathematical physics, Yang–Mills theory is a gauge theory based on a special unitary group SU(n), or more generally any compact Lie group. A Yang–Mills theory seeks to describe the behavior of elementary particles using these non-abelian Lie groups and is at the core of the unification of the electromagnetic force and weak forces (i.e. U(1) × SU(2)) as well as quantum chromodynamics, the theory of the strong force (based on SU(3)). Thus it forms the basis of our understanding of the Standard Model of particle physics.

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

In statistics, a confidence region is a multi-dimensional generalization of a confidence interval. It is a set of points in an n-dimensional space, often represented as an ellipsoid around a point which is an estimated solution to a problem, although other shapes can occur.

In econometrics, endogeneity broadly refers to situations in which an explanatory variable is correlated with the error term. The distinction between endogenous and exogenous variables originated in simultaneous equations models, where one separates variables whose values are determined by the model from variables which are predetermined. Ignoring simultaneity in the estimation leads to biased estimates as it violates the exogeneity assumption of the Gauss–Markov theorem. The problem of endogeneity is often ignored by researchers conducting non-experimental research and doing so precludes making policy recommendations. Instrumental variable techniques are commonly used to mitigate this problem.

In mathematics, more specifically in dynamical systems, the method of averaging exploits systems containing time-scales separation: a fast oscillationversus a slow drift. It suggests that we perform an averaging over a given amount of time in order to iron out the fast oscillations and observe the qualitative behavior from the resulting dynamics. The approximated solution holds under finite time inversely proportional to the parameter denoting the slow time scale. It turns out to be a customary problem where there exists the trade off between how good is the approximated solution balanced by how much time it holds to be close to the original solution.

In mathematics, the method of matched asymptotic expansions is a common approach to finding an accurate approximation to the solution to an equation, or system of equations. It is particularly used when solving singularly perturbed differential equations. It involves finding several different approximate solutions, each of which is valid for part of the range of the independent variable, and then combining these different solutions together to give a single approximate solution that is valid for the whole range of values of the independent variable. In the Russian literature, these methods were known under the name of "intermediate asymptotics" and were introduced in the work of Yakov Zeldovich and Grigory Barenblatt.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

<span class="mw-page-title-main">Hamilton's principle</span> Formulation of the principle of stationary action

In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system. Although formulated originally for classical mechanics, Hamilton's principle also applies to classical fields such as the electromagnetic and gravitational fields, and plays an important role in quantum mechanics, quantum field theory and criticality theories.

<span class="mw-page-title-main">BKL singularity</span> General relativity model near the beginning of the universe

A Belinski–Khalatnikov–Lifshitz (BKL) singularity is a model of the dynamic evolution of the universe near the initial gravitational singularity, described by an anisotropic, chaotic solution of the Einstein field equation of gravitation. According to this model, the universe is chaotically oscillating around a gravitational singularity in which time and space become equal to zero or, equivalently, the spacetime curvature becomes infinitely big. This singularity is physically real in the sense that it is a necessary property of the solution, and will appear also in the exact solution of those equations. The singularity is not artificially created by the assumptions and simplifications made by the other special solutions such as the Friedmann–Lemaître–Robertson–Walker, quasi-isotropic, and Kasner solutions.

The turbulent Prandtl number (Prt) is a non-dimensional term defined as the ratio between the momentum eddy diffusivity and the heat transfer eddy diffusivity. It is useful for solving the heat transfer problem of turbulent boundary layer flows. The simplest model for Prt is the Reynolds analogy, which yields a turbulent Prandtl number of 1. From experimental data, Prt has an average value of 0.85, but ranges from 0.7 to 0.9 depending on the Prandtl number of the fluid in question.

<span class="mw-page-title-main">Interval finite element</span>

In numerical analysis, the interval finite element method is a finite element method that uses interval parameters. Interval FEM can be applied in situations where it is not possible to get reliable probabilistic characteristics of the structure. This is important in concrete structures, wood structures, geomechanics, composite structures, biomechanics and in many other areas. The goal of the Interval Finite Element is to find upper and lower bounds of different characteristics of the model and use these results in the design process. This is so called worst case design, which is closely related to the limit state design.

<span class="mw-page-title-main">Anatoly Karatsuba</span> Russian mathematician (1937–2008)

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

The Krylov–Bogolyubov averaging method is a mathematical method for approximate analysis of oscillating processes in non-linear mechanics. The method is based on the averaging principle when the exact differential equation of the motion is replaced by its averaged version. The method is named after Nikolay Krylov and Nikolay Bogoliubov.

<span class="mw-page-title-main">Kirchhoff–Love plate theory</span>

The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love using assumptions proposed by Kirchhoff. The theory assumes that a mid-surface plane can be used to represent a three-dimensional plate in two-dimensional form.

Phase reduction is a method used to reduce a multi-dimensional dynamical equation describing a nonlinear limit cycle oscillator into a one-dimensional phase equation. Many phenomena in our world such as chemical reactions, electric circuits, mechanical vibrations, cardiac cells, and spiking neurons are examples of rhythmic phenomena, and can be considered as nonlinear limit cycle oscillators.

References

  1. Wasow, Wolfgang R. (1981), "ON BOUNDARY LAYER PROBLEMS IN THE THEORY OF ORDINARY DIFFERENTIAL EQUATIONS" (PDF), Mathematics Research Center, University of Wisconsin-Madison, Technical Summary Report, 2244: PDF page 5
  2. Wang, Yingwei; Chen, Suqin; Wu, Xionghua (2010). "A rational spectral collocation method for solving a class of parameterized singular perturbation problems". Journal of Computational and Applied Mathematics. 233 (10): 2652–2660. Bibcode:2010JCoAM.233.2652W. doi: 10.1016/j.cam.2009.11.011 .
  3. Holmes, Mark H. Introduction to Perturbation Methods. Springer, 1995. ISBN   978-0-387-94203-2
  4. Hinch, E. J. Perturbation methods. Cambridge University Press, 1991. ISBN   978-0-521-37897-0
  5. Bender, Carl M. and Orszag, Steven A. Advanced Mathematical Methods for Scientists and Engineers. Springer, 1999. ISBN   978-0-387-98931-0
  6. Tikhonov, A. N. (1952), "Systems of differential equations containing a small parameter multiplying the derivative" (in Russian), Mat. Sb. 31 (73), pp. 575–586
  7. Verhulst, Ferdinand. Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Springer, 2005. ISBN   0-387-22966-3.
  8. Owen, M. R. and Lewis, M. A. "How Predation can Slow, Stop, or Reverse a Prey Invasion", Bulletin of Mathematical Biology (2001) 63, 655-684.