Slip ratio

Last updated

Slip ratio is a means of calculating and expressing the slipping behavior of the wheel of an automobile. It is of fundamental importance in the field of vehicle dynamics, as it allows to understand the relationship between the deformation of the tire and the longitudinal forces (i.e. the forces responsible for forward acceleration and braking) acting upon it. Furthermore, it is essential to the effectiveness of any anti-lock braking system.

When accelerating or braking a vehicle equipped with tires, the observed angular velocity of the tire does not match the expected velocity for pure rolling motion, which means there appears to be apparent sliding between outer surface of the rim and the road in addition to rolling due to deformation of the part of tire above the area in contact with the road. When driving on dry pavement the fraction of slip that is caused by actual sliding taking place between road and tire contact patch is negligible in magnitude and thus does not in practice make slip ratio dependent on speed. It is only relevant in soft or slippery surfaces, like snow, mud, ice, etc and results constant speed difference in same road and load conditions independently of speed, and thus fraction of slip ratio due to that cause is inversely related to speed of the vehicle.

The difference between theoretically calculated forward speed based on angular speed of the rim and rolling radius, and actual speed of the vehicle, expressed as a percentage of the latter, is called ‘slip ratio’. This slippage is caused by the forces at the contact patch of the tire, not the opposite way, and is thus of fundamental importance to determine the accelerations a vehicle can produce.

There is no universally agreed upon definition of slip ratio. [1] The SAE J670 definition is, for tires pointing straight ahead: [2]

Where is the angular velocity of the wheel, is the effective radius of the corresponding free-rolling tire, which can be calculated from the revolutions per kilometer, and is the forward velocity of the vehicle.

Related Research Articles

Friction Force resisting sliding motion

Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:

Jerk (physics) Rate of change of acceleration with time

In physics, jerk or jolt is the rate at which an object's acceleration changes with respect to time. It is a vector quantity. Jerk is most commonly denoted by the symbol j and expressed in m/s3 or standard gravities per second (g0/s).

For motorized vehicles, such as automobiles, aircraft, and watercraft, vehicle dynamics is the study of vehicle motion, e.g., how a vehicle's forward movement changes in response to driver inputs, propulsion system outputs, ambient conditions, air/surface/water conditions, etc.

Slip angle Term or maneuver in vehicle dynamics

In vehicle dynamics, slip angle or sideslip angle is the angle between the direction in which a wheel is pointing and the direction in which it is actually traveling. This slip angle results in a force, the cornering force, which is in the plane of the contact patch and perpendicular to the intersection of the contact patch and the midplane of the wheel. This cornering force increases approximately linearly for the first few degrees of slip angle, then increases non-linearly to a maximum before beginning to decrease.

Understeer and oversteer Vehicle dynamics terms

Understeer and oversteer are vehicle dynamics terms used to describe the sensitivity of a vehicle to steering. Oversteer is what occurs when a car turns (steers) by more than the amount commanded by the driver. Conversely, understeer is what occurs when a car steers less than the amount commanded by the driver.

Automobile handling and vehicle handling are descriptions of the way a wheeled vehicle responds and reacts to the inputs of a driver, as well as how it moves along a track or road. It is commonly judged by how a vehicle performs particularly during cornering, acceleration, and braking as well as on the vehicle's directional stability when moving in steady state condition.

Weight transfer

Weight transfer and load transfer are two expressions used somewhat confusingly to describe two distinct effects:

Rolling Type of motion which combines translation and rotation with respect to a surface

Rolling is a type of motion that combines rotation and translation of that object with respect to a surface, such that, if ideal conditions exist, the two are in contact with each other without sliding.

Rolling resistance Force resisting the motion when a body rolls on a surface

Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation of the wheel, roadbed, etc., is recovered when the pressure is removed. Two forms of this are hysteresis losses, and permanent (plastic) deformation of the object or the surface. Note that the slippage between the wheel and the surface also results in energy dissipation. Although some researchers have included this term in rolling resistance, some suggest that this dissipation term should be treated separately from rolling resistance because it is due to the applied torque to the wheel and the resultant slip between the wheel and ground, which is called slip loss or slip resistance. In addition, only the so-called slip resistance involves friction, therefore the name "rolling friction" is to an extent a misnomer.

Gear train Mechanical transmission using multiple gears.

A gear train is a mechanical system formed by mounting gears on a frame so the teeth of the gears engage.

Adhesion railway Railway which relies on adhesion traction to move a train

An adhesion railway relies on adhesion traction to move the train. Adhesion traction is the friction between the drive wheels and the steel rail. The term "adhesion railway" is used only when it is necessary to distinguish adhesion railways from railways moved by other means, such as by a stationary engine pulling on a cable attached to the cars or by railways that are moved by a pinion meshing with a rack.

Skid mark Mark left by any solid which moves against another

A skid mark is the visible mark left by any solid which moves against another, and is an important aspect of trace evidence analysis in forensic science and forensic engineering. Skid marks caused by tires on roads occur when a vehicle wheel stops rolling and slides or spins on the surface of the road. Skid marks can be analyzed to find the maximum and minimum vehicle speed prior to an impact or incident. Skidding can also occur on black ice or diesel deposits on the road and may not leave a mark at all.

Traction, or tractive force, is the force used to generate motion between a body and a tangential surface, through the use of dry friction, though the use of shear force of the surface is also commonly used.

Hunting oscillation Self-oscillation about an equilibrium that is usually unwanted

Hunting oscillation is a self-oscillation, usually unwanted, about an equilibrium. The expression came into use in the 19th century and describes how a system "hunts" for equilibrium. The expression is used to describe phenomena in such diverse fields as electronics, aviation, biology, and railway engineering.

Bicycle and motorcycle dynamics Science behind the motion of bicycles and motorcycles

Bicycle and motorcycle dynamics is the science of the motion of bicycles and motorcycles and their components, due to the forces acting on them. Dynamics falls under a branch of physics known as classical mechanics. Bike motions of interest include balancing, steering, braking, accelerating, suspension activation, and vibration. The study of these motions began in the late 19th century and continues today.

In (automotive) vehicle dynamics, slip is the relative motion between a tire and the road surface it is moving on. This slip can be generated either by the tire's rotational speed being greater or less than the free-rolling speed, or by the tire's plane of rotation being at an angle to its direction of motion.

Wheelie Vehicle maneuver

In vehicle acrobatics, a wheelie, or wheelstand, is a vehicle maneuver in which the front wheel or wheels come off the ground due to sufficient torque being applied to the rear wheel or wheels, or rider motion relative to the vehicle. Wheelies are usually associated with bicycles and motorcycles, but can be done with other vehicles such as cars, especially in drag racing and tractor pulling.

Yaw (rotation)

A yaw rotation is a movement around the yaw axis of a rigid body that changes the direction it is pointing, to the left or right of its direction of motion. The yaw rate or yaw velocity of a car, aircraft, projectile or other rigid body is the angular velocity of this rotation, or rate of change of the heading angle when the aircraft is horizontal. It is commonly measured in degrees per second or radians per second.

Relaxation length

Relaxation length is a property of pneumatic tires that describes the delay between when a slip angle is introduced and when the cornering force reaches its steady-state value. It is also described as the distance that a tire rolls before the lateral force builds up to 63% of its steady-state value. It can be calculated as the ratio of cornering stiffness over the lateral stiffness, where cornering stiffness is the ratio of cornering force over slip angle, and lateral stiffness is the ratio of lateral force over lateral displacement.

An automobile skid is an automobile handling condition where one or more tires are slipping relative to the road, and the overall handling of the vehicle has been affected.

References

  1. Milliken, William; Milliken, Douglas (December 1, 1994). Race Car Vehicle Dynamics. ISBN   978-1-56091-526-3.
  2. SAE Vehicle Dynamics Standards Committee (January 24, 2008). "Vehicle Dynamics Terminology". Society of Automotive Engineers.{{cite journal}}: Cite journal requires |journal= (help)