Small activating RNA

Last updated

Small activating RNAs (saRNAs) are double-stranded RNA molecules that induce gene expression at the transcriptional level, a phenomenon known as RNA activation (RNAa). This contrasts with the gene silencing typically associated with small interfering RNAs (siRNAs) in RNA interference. saRNAs offer a novel approach to upregulate genes of therapeutic interest, and have progressed to clinical trials.

Contents

Mechanism of Action

saRNAs, typically 19 nucleotides in length with 2-nucleotide overhangs (similar to siRNAs), [1] mediate RNAa through the RNA-induced transcriptional activation (RITA) complex. This complex includes Argonaute 2 (AGO2), RNA helicase A (RHA), and CTR9 (a component of the PAF1 complex). [2] The RITA complex facilitates the transition of RNA polymerase II from a paused to an elongating state at the target gene's promoter, leading to increased transcription. (For a more detailed explanation of the mechanism, see RNA activation.)

saRNA Design and Use

Designing effective saRNAs involves careful consideration of several factors. Unlike siRNAs, which primarily target mRNA sequences for degradation, saRNAs target promoter regions, and their efficacy is highly dependent on the specific target location. [3] [4] Proximity to the transcription start site (TSS), sequence context, and local chromatin state are critical determinants of activation versus silencing outcomes. [5] [6] [3]

Key considerations for saRNA design include:

A set of guidelines for designing saRNAs has been published [3] and an online resource for saRNAs has been developed to integrate experimentally verified saRNAs and proteins involved. [11]

Therapeutic Applications

saRNAs represent a promising therapeutic modality for diseases where increasing the expression of a specific gene is beneficial. This approach is particularly attractive for targeting genes considered "undruggable" by conventional small molecule or antibody-based therapies. [12] [13]

  • p21: RAG-01, an saRNA targeting p21, has received FDA approval for Phase I trials for non-muscle invasive bladder cancer (NMIBC). [14] [15] [16]
  • C/EBP-α: MTL-CEBPA, the first saRNA drug candidate, targets C/EBP-α and has shown efficacy in hepatocellular carcinoma (HCC) in Phase II clinical trials. [17] [18]
  • LHPP: saRNAs targeting LHPP have shown preclinical efficacy in HCC. [19]
  • PTPRO: saRNAs have been used to overcome trastuzumab resistance in HER2-positive breast cancer by reactivating PTPRO. [20]
  • CDH13 saRNAs have been used to upregulate CDH13 expression in CML cells overcoming imatinib-resistance [21]

Clinical Progress

saRNA based therapeutics have advanced from preclinical studies to human clinical trials.

Challenges and Future Directions

While saRNAs hold significant therapeutic promise, challenges remain:

See also

References

  1. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R (November 2006). "Small dsRNAs induce transcriptional activation in human cells". Proceedings of the National Academy of Sciences of the United States of America. 103 (46): 17337–42. Bibcode:2006PNAS..10317337L. doi: 10.1073/pnas.0607015103 . PMC   1859931 . PMID   17085592.
  2. Portnoy V, Lin SH, Li KH, Burlingame A, Hu ZH, Li H, Li LC (March 2016). "saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription". Cell Research. 26 (3): 320–335. doi:10.1038/cr.2016.22. PMC   4778170 . PMID   26891992.
  3. 1 2 3 4 Wang, J; Place, RF; Portnoy, V; Huang, V; Kang, MR; Kosaka, M; Ho, MKC; Li, LC (11 March 2015). "Inducing gene expression by targeting promoter sequences using small activating RNAs". Journal of Biological Methods. 2 (1): 1. doi:10.14440/jbm.2015.39. PMC   4379447 . PMID   25839046.
  4. Wang, J; Huang, V; Ye, L; Bárcena, A; Lin, G; Lue, TF; Li, LC (1 February 2015). "Identification of small activating RNAs that enhance endogenous OCT4 expression in human mesenchymal stem cells". Stem Cells and Development. 24 (3): 345–53. doi:10.1089/scd.2014.0290. PMC   4303016 . PMID   25232932.
  5. 1 2 Janowski, BA; Younger, ST; Hardy, DB; Ram, R; Huffman, KE; Corey, DR (March 2007). "Activating gene expression in mammalian cells with promoter-targeted duplex RNAs". Nature Chemical Biology. 3 (3): 166–73. doi:10.1038/nchembio860. PMID   17259978.
  6. Li, LC (2017). "Small RNA-Guided Transcriptional Gene Activation (RNAa) in Mammalian Cells". RNA Activation. Advances in Experimental Medicine and Biology. Vol. 983. pp. 1–20. doi:10.1007/978-981-10-4310-9_1. ISBN   978-981-10-4309-3. PMID   28639188.
  7. Place, RF; Noonan, EJ; Földes-Papp, Z; Li, LC (August 2010). "Defining features and exploring chemical modifications to manipulate RNAa activity". Current Pharmaceutical Biotechnology. 11 (5): 518–26. doi:10.2174/138920110791591463. PMC   3413318 . PMID   20662764.
  8. Voutila, J; Reebye, V; Roberts, TC; Protopapa, P; Andrikakou, P; Blakey, DC; Habib, R; Huber, H; Saetrom, P; Rossi, JJ; Habib, NA (6 December 2017). "Development and Mechanism of Small Activating RNA Targeting CEBPA, a Novel Therapeutic in Clinical Trials for Liver Cancer". Molecular Therapy. 25 (12): 2705–2714. doi:10.1016/j.ymthe.2017.07.018. PMC   5768526 . PMID   28882451.
  9. Kwok, A; Raulf, N; Habib, N (March 2019). "Developing small activating RNA as a therapeutic: current challenges and promises". Therapeutic Delivery. 10 (3): 151–164. doi: 10.4155/tde-2018-0061 . PMID   30909853.
  10. 1 2 Pandey, Shalini; Bednarz, Patrick T.; Oberli, Matthias A.; Veiseh, Omid (October 2024). "Small activating RNA delivery in vivo: Challenges, prospects, and lessons learned from siRNA delivery". Nano Research. 17 (10): 8990–9002. Bibcode:2024NaRes..17.8990P. doi:10.1007/s12274-024-6862-4.
  11. Dar, Showkat Ahmad; Kumar, Manoj (July 2018). "saRNAdb: Resource of Small Activating RNAs for Up-regulating the Gene Expression". Journal of Molecular Biology. 430 (15): 2212–2218. doi:10.1016/j.jmb.2018.03.023. PMID   29625201. S2CID   4936884.
  12. 1 2 Qian Y, Liu C, Zeng X, Li LC (2025). "RNAa: Mechanisms, Therapeutic Potential, and Clinical Progress". Molecular Therapy - Nucleic Acids. 36 (2) 102494. doi:10.1016/j.omtn.2025.102494. PMC   11930103 . PMID   40125270.
  13. Ghanbarian, H; Aghamiri, S; Eftekhary, M; Wagner, N; Wagner, KD (8 March 2021). "Small Activating RNAs: Towards the Development of New Therapeutic Agents and Clinical Treatments". Cells. 10 (3): 591. doi: 10.3390/cells10030591 . PMC   8001863 . PMID   33800164.
  14. 1 2 "Ractigen Therapeutics Announces FDA Approval for RAG-01, a First-in-Class saRNA Therapy for BCG-Unresponsive NMIBC". Ractigen Therapeutics. April 2024. Retrieved 2024-11-21.
  15. Kang, MR; Yang, G; Place, RF; Charisse, K; Epstein-Barash, H; Manoharan, M; Li, LC (1 October 2012). "Intravesical delivery of small activating RNA formulated into lipid nanoparticles inhibits orthotopic bladder tumor growth". Cancer Research. 72 (19): 5069–79. doi:10.1158/0008-5472.CAN-12-1871. PMID   22869584.
  16. Kang, MR; Li, G; Pan, T; Xing, JC; Li, LC (2017). "Development of Therapeutic dsP21-322 for Cancer Treatment". RNA Activation. Advances in Experimental Medicine and Biology. Vol. 983. pp. 217–229. doi:10.1007/978-981-10-4310-9_16. ISBN   978-981-10-4309-3. PMID   28639203.
  17. 1 2 Sarker, D; Plummer, R; Meyer, T; Sodergren, MH; Basu, B; Chee, CE; Huang, KW; Palmer, DH; Ma, YT; Evans, TRJ; Spalding, DRC; Pai, M; Sharma, R; Pinato, DJ; Spicer, J; Hunter, S; Kwatra, V; Nicholls, JP; Collin, D; Nutbrown, R; Glenny, H; Fairbairn, S; Reebye, V; Voutila, J; Dorman, S; Andrikakou, P; Lloyd, P; Felstead, S; Vasara, J; Habib, R; Wood, C; Saetrom, P; Huber, HE; Blakey, DC; Rossi, JJ; Habib, N (1 August 2020). "MTL-CEBPA, a Small Activating RNA Therapeutic Upregulating C/EBP-α, in Patients with Advanced Liver Cancer: A First-in-Human, Multicenter, Open-Label, Phase I Trial" (PDF). Clinical Cancer Research. 26 (15): 3936–3946. doi:10.1158/1078-0432.CCR-20-0414. PMID   32357963.
  18. 1 2 Hashimoto, A; Sarker, D; Reebye, V; Jarvis, S; Sodergren, MH; Kossenkov, A; Sanseviero, E; Raulf, N; Vasara, J; Andrikakou, P; Meyer, T; Huang, KW; Plummer, R; Chee, CE; Spalding, D; Pai, M; Khan, S; Pinato, DJ; Sharma, R; Basu, B; Palmer, D; Ma, YT; Evans, J; Habib, R; Martirosyan, A; Elasri, N; Reynaud, A; Rossi, JJ; Cobbold, M; Habib, NA; Gabrilovich, DI (1 November 2021). "Upregulation of C/EBPα Inhibits Suppressive Activity of Myeloid Cells and Potentiates Antitumor Response in Mice and Patients with Cancer". Clinical Cancer Research. 27 (21): 5961–5978. doi:10.1158/1078-0432.CCR-21-0986. PMC   8756351 . PMID   34407972.
  19. Bi CQ, Kang T, Qian YK, Kang M, Zeng XH, Li LC (March 2024). "Upregulation of LHPP by saRNA inhibited hepatocellular cancer cell proliferation and xenograft tumor growth". PLOS ONE. 19 (3): 810–818. Bibcode:2024PLoSO..1999522B. doi: 10.1371/journal.pone.0299522 . PMC   10941452 . PMID   38489487.
  20. Wang L, Lin Y, Yao Z, Babu N, Lin W, Chen C, Du L, Cai S, Pan Y, Xiong X, et al. (September 2024). "Targeting undruggable phosphatase overcomes trastuzumab resistance by inhibiting multi-oncogenic kinases". Drug Resistance Updates. 76 (6) 101118. doi:10.1016/j.drup.2024.101118. PMC   11195946 . PMID   38913624.
  21. Su R, Wen Z, Zhan X, Long Y, Wang X, Li C, Su Y, Fei J (September 2024). "Small RNA activation of CDH13 expression overcome BCR-ABL1-independent imatinib-resistance and their signaling pathway studies in chronic myeloid leukemia". Cell Death & Disease. 15 (9) 615: 3910–3913. doi:10.1038/s41419-024-07006-9. PMC   11405707 . PMID   39008739.
  22. Zhang L, Chen S, Zheng Z, Lin Y, Wang C, Gong Y, Qin A, Su J, Tang S (2024-11-06). "Artificial Neutrophil-Mediated CEBPA-saRNA Delivery to Ameliorate ALI/ARDS". ACS Applied Materials & Interfaces. 16 (46): 51957–51969. Bibcode:2024AAMI...1651957Z. doi:10.1021/acsami.4c09022. PMC   10627407 . PMID   37930896.
  23. Yang R, Ruan B, Wang R, Zhang X, Xing P, Li C, Zhang Y, Chang X, Song H, Zhang S, et al. (2024-06-01). "Cardiomyocyte betaII spectrin plays a critical role in maintaining cardiac function by regulating mitochondrial respiratory function". Cardiovascular Research. 120 (14): 1312–1326. doi:10.1093/cvr/cvae116. PMC   11376619 . PMID   38747816.
  24. Andrikakou, P; Reebye, V; Vasconcelos, D; Yoon, S; Voutila, J; George, AJT; Swiderski, P; Habib, R; Catley, M; Blakey, D; Habib, NA; Rossi, JJ; Huang, KW (December 2022). "Enhancing SIRT1 Gene Expression Using Small Activating RNAs: A Novel Approach for Reversing Metabolic Syndrome". Nucleic Acid Therapeutics. 32 (6): 486–496. doi:10.1089/nat.2021.0115. PMID   35895511.
  25. Zhang, Q; Guo, Y; Kang, M; Lin, WH; Wu, JC; Yu, Y; Li, LC; Sang, A (2023). "p21CIP/WAF1 saRNA inhibits proliferative vitreoretinopathy in a rabbit model". PLOS ONE. 18 (2): e0282063. Bibcode:2023PLoSO..1882063Z. doi: 10.1371/journal.pone.0282063 . PMC   9949646 . PMID   36821623.
  26. Liu H, Chen S, Sun Q, Sha Q, Tang Y, Jia W, Chen L, Zhao J, Wang T, Sun X (2022). "Let-7c increases BACE2 expression by RNAa and decreases Abeta production". American Journal of Translational Research. 14 (2): 899–908. PMC   8902526 . PMID   35273693.