Small multidrug resistance protein

Last updated
Small Multidrug Resistance protein
Identifiers
SymbolMulti_Drug_Res
Pfam PF00892
Pfam clan CL0184
InterPro IPR000390
SCOP2 1s7b / SCOPe / SUPFAM
TCDB 2.A.7
OPM superfamily 70
OPM protein 5i20
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Small multidrug resistance proteins (also known as drug/metabolite transporter) are a family of integral membrane proteins that confer drug resistance to a wide range of toxic compounds including guanidinium, hydrophobic drugs, antiseptics, polyamines, and glycolipids, [1] by removing them for the cells. Within the family there are four subtypes. Small multidrug resistance proteins are characterized by four α-helical transmembrane strands. [2] SMR proteins are some of the smallest membrane transport proteins found in nature. [1] The efflux is coupled to an influx of protons. An example is Escherichia coli mvrC P23895 which prevents the incorporation of methyl viologen into cells [3] and is involved in ethidium bromide efflux. [4]

The four functional subtypes of small multidrug resistance proteins make up approximately 97% of small multidrug resistant proteins. One subtype, called GDx (Guanidinium export) transports guanidinium, which is a byproduct of the nitrogen metabolic process. The subtype Qac (Quaternary Ammonium Cation) exports hydrophobic cationic compounds. These two subtypes are relevant because they have been shown to aid in resistance to antiseptics used in human households. Another subtype (mdtI/mdtJ), is named for the genes mdtI/mdtJ, is associated with the transport of small polyamine metabolites. The subtype arnE/arnF, named for the genes arnE/arnF, transports glycolipids. [1] Co-expressed genes can make up "paired SMRs" in all four functional subtypes. It is predicted that these paired SMRs developed through many independent duplications [5] .

The genes that encode small multidrug resistance proteins are often found in the assessment of profiles with drug resistance. [6] Their dual topology gives them the unique advantage to insert into a membrane in either inward or outward positions. Antimicrobials are being developed to target small multidrug resistance proteins because of the role of SMR proteins in resistance to treatment and management. [1]

References

  1. 1 2 3 4 Burata, Olive E.; Yeh, Trevor Justin; Macdonald, Christian B.; Stockbridge, Randy B. (2022-09-12). "Still rocking in the structural era: A molecular overview of the small multidrug resistance (SMR) transporter family". The Journal of Biological Chemistry. 298 (10) 102482. doi: 10.1016/j.jbc.2022.102482 . ISSN   1083-351X. PMC   9574504 . PMID   36100040.
  2. Bay, Denice C.; Turner, Raymond J. (2009-06-23). "Diversity and evolution of the small multidrug resistance protein family". BMC Evolutionary Biology. 9 (1): 140. Bibcode:2009BMCEE...9..140B. doi: 10.1186/1471-2148-9-140 . ISSN   1471-2148. PMC   2716321 . PMID   19549332.
  3. Morimyo M, Hongo E, Hama-inaba H, Machida I (1992). "Cloning and characterization of the mvrC gene of Escherichia coli K-12 which confers resistance against methyl viologen toxicity". Nucleic Acids Res. 20 (12): 3159–3165. doi:10.1093/nar/20.12.3159. PMC   312453 . PMID   1320256.
  4. Purewal AS (1991). "Nucleotide sequence of the ethidium efflux gene from Escherichia coli". FEMS Microbiol. Lett. 66 (2): 229–231. doi: 10.1111/j.1574-6968.1991.tb04870.x . PMID   1936950.
  5. Burata, Olive E.; Yeh, Trevor Justin; Macdonald, Christian B.; Stockbridge, Randy B. (October 2022). "Still rocking in the structural era: A molecular overview of the small multidrug resistance (SMR) transporter family". Journal of Biological Chemistry. 298 (10): 102482. doi: 10.1016/j.jbc.2022.102482 . PMC   9574504 . PMID   36100040.{{cite journal}}: CS1 maint: article number as page number (link)
  6. Kermani, Ali A.; Macdonald, Christian B.; Burata, Olive E.; Ben Koff, B.; Koide, Akiko; Denbaum, Eric; Koide, Shohei; Stockbridge, Randy B. (2020-11-27). "The structural basis of promiscuity in small multidrug resistance transporters". Nature Communications. 11 (1) 6064. Bibcode:2020NatCo..11.6064K. doi:10.1038/s41467-020-19820-8. ISSN   2041-1723. PMC   7695847 . PMID   33247110.
This article incorporates text from the public domain Pfam and InterPro: IPR000390