Smoothed octagon

Last updated

A smoothed octagon. Smoothed Octagon Simple.svg
A smoothed octagon.
The family of maximally dense packings of the smoothed octagon. SmoothedOctagonPackings.gif
The family of maximally dense packings of the smoothed octagon.

The smoothed octagon is a region in the plane found by Karl Reinhardt in 1934 and conjectured by him to have the lowest maximum packing density of the plane of all centrally symmetric convex shapes. [1] It was also independently discovered by Kurt Mahler in 1947. [2] It is constructed by replacing the corners of a regular octagon with a section of a hyperbola that is tangent to the two sides adjacent to the corner and asymptotic to the sides adjacent to these.

Contents

Construction

The corners of the smoothed octagon can be found by rotating three regular octagons whose centres form a triangle with varying shape but constant area. SmoothedOctagonCorners.gif
The corners of the smoothed octagon can be found by rotating three regular octagons whose centres form a triangle with varying shape but constant area.
Construction of the smoothed octagon (black), the tangent hyperbola (red), the asymptotes of this hyperbola (green), and the tangent sides to the hyperbola (blue) Smoothed Octagon.svg
Construction of the smoothed octagon (black), the tangent hyperbola (red), the asymptotes of this hyperbola (green), and the tangent sides to the hyperbola (blue)

The hyperbola that forms each corner of the smoothed octagon is tangent to two sides of a regular octagon, and asymptotic to the two adjacent to these. [3] The following details apply to a regular octagon of circumradius with its centre at the point and one vertex at the point . For two constants and , the hyperbola is given by the equation or the equivalent parameterization (for the right-hand branch only)

for the portion of the hyperbola that forms the corner, given by the range of parameter values

The lines of the octagon tangent to the hyperbola are , and the lines asymptotic to the hyperbola are simply .

Packing

For every centrally symmetric convex planar set, including the smoothed octagon, the maximum packing density is achieved by a lattice packing, in which unrotated copies of the shape are translated by the vectors of a lattice. [4] The smoothed octagon achieves its maximum packing density, not just for a single packing, but for a 1-parameter family. All of these are lattice packings. [5] The smoothed octagon has a maximum packing density given by [2] [3]

This is lower than the maximum packing density of circles, which is [3]

The maximum known packing density of the ordinary regular octagon is also slightly less than the maximum packing density of circles, but higher than that of the smoothed octagon. [6]

Unsolved problem in mathematics:

Is the smoothed octagon the centrally symmetric convex shape with the lowest maximum packing density?

Reinhardt's conjecture that the smoothed octagon has the lowest maximum packing density of all centrally symmetric convex shapes in the plane remains unsolved. However, Thomas Hales and Koundinya Vajjha claimed to have proved a weaker conjecture, which asserts that the most unpackable centrally symmetric convex disk must be a smoothed polygon. [7] [8] Additionally, Fedor Nazarov provided a partial result by proving that the smoothed octagon is a local minimum for packing density among centrally symmetric convex shapes. [9]

If central symmetry is not required, the regular heptagon is conjectured to have even lower packing density, but neither its packing density nor its optimality have been proven. In three dimensions, Ulam's packing conjecture states that no convex shape has a lower maximum packing density than the ball. [5]

Related Research Articles

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Log-normal distribution</span> Probability distribution

In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable that is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in the natural sciences, engineering, as well as medicine, economics and other fields. It can be applied to diverse quantities such as energies, concentrations, lengths, prices of financial instruments, and other metrics, while acknowledging the inherent uncertainty in all measurements.

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Paraboloid</span> Quadric surface with one axis of symmetry and no center of symmetry

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Packing problems</span> Problems which attempt to find the most efficient way to pack objects into containers

Packing problems are a class of optimization problems in mathematics that involve attempting to pack objects together into containers. The goal is to either pack a single container as densely as possible or pack all objects using as few containers as possible. Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap.

<span class="mw-page-title-main">Lemniscate of Bernoulli</span> Plane algebraic curve

In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points F1 and F2, known as foci, at distance 2c from each other as the locus of points P so that PF1·PF2 = c2. The curve has a shape similar to the numeral 8 and to the ∞ symbol. Its name is from lemniscatus, which is Latin for "decorated with hanging ribbons". It is a special case of the Cassini oval and is a rational algebraic curve of degree 4.

<span class="mw-page-title-main">Sphere packing</span> Geometrical structure

In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space. However, sphere packing problems can be generalised to consider unequal spheres, spaces of other dimensions or to non-Euclidean spaces such as hyperbolic space.

<span class="mw-page-title-main">Discrete geometry</span> Branch of geometry that studies combinatorial properties and constructive methods

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

<span class="mw-page-title-main">Cone</span> Geometric shape

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.

<span class="mw-page-title-main">Tractrix</span> Curve traced by a point on a rod as one end is dragged along a line

In geometry, a tractrix is the curve along which an object moves, under the influence of friction, when pulled on a horizontal plane by a line segment attached to a pulling point that moves at a right angle to the initial line between the object and the puller at an infinitesimal speed. It is therefore a curve of pursuit. It was first introduced by Claude Perrault in 1670, and later studied by Isaac Newton (1676) and Christiaan Huygens (1693).

<span class="mw-page-title-main">Fisher transformation</span> Statistical transformation

In statistics, the Fisher transformation of a Pearson correlation coefficient is its inverse hyperbolic tangent (artanh). When the sample correlation coefficient r is near 1 or -1, its distribution is highly skewed, which makes it difficult to estimate confidence intervals and apply tests of significance for the population correlation coefficient ρ. The Fisher transformation solves this problem by yielding a variable whose distribution is approximately normally distributed, with a variance that is stable over different values of r.

<span class="mw-page-title-main">Close-packing of equal spheres</span> Dense arrangement of congruent spheres in an infinite, regular arrangement

In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement. Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is

László Fejes Tóth was a Hungarian mathematician who specialized in geometry. He proved that a lattice pattern is the most efficient way to pack centrally symmetric convex sets on the Euclidean plane. He also investigated the sphere packing problem. He was the first to show, in 1953, that proof of the Kepler conjecture can be reduced to a finite case analysis and, later, that the problem might be solved using a computer.

<span class="mw-page-title-main">Universal parabolic constant</span> Mathematical constant in conic sections

The universal parabolic constant is a mathematical constant.

<span class="mw-page-title-main">Circle packing</span> Field of geometry closely arranging circles on a plane

In geometry, circle packing is the study of the arrangement of circles on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap. The associated packing density, η, of an arrangement is the proportion of the surface covered by the circles. Generalisations can be made to higher dimensions – this is called sphere packing, which usually deals only with identical spheres.

<span class="mw-page-title-main">Semi-major and semi-minor axes</span> Term in geometry; longest and shortest semidiameters of an ellipse

In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle.

In mathematics, the theory of finite sphere packing concerns the question of how a finite number of equally-sized spheres can be most efficiently packed. The question of packing finitely many spheres has only been investigated in detail in recent decades, with much of the groundwork being laid by László Fejes Tóth.

References

  1. Reinhardt, Karl (1934). "Über die dichteste gitterförmige Lagerung kongruenter Bereiche in der Ebene und eine besondere Art konvexer Kurven". Abh. Math. Sem. Univ. Hamburg. 10: 216–230. doi:10.1007/BF02940676. S2CID   120336230.
  2. 1 2 Mahler, Kurt (1947). "On the minimum determinant and the circumscribed hexagons of a convex domain" (PDF). Indagationes Mathematicae . 9: 326–337. MR   0021017.
  3. 1 2 3 Fejes Tóth, László; Fejes Tóth, Gábor; Kuperberg, Włodzimierz (2023). Lagerungen: Arrangements in the Plane, on the Sphere, and in Space. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Vol. 360. Cham: Springer. p.  106. doi:10.1007/978-3-031-21800-2. ISBN   978-3-031-21799-9. MR   4628019.
  4. Fejes Tóth, László (1950). "Some packing and covering theorems". Acta Universitatis Szegediensis. 12: 62–67. MR   0038086.
  5. 1 2 Kallus, Yoav (2015). "Pessimal packing shapes". Geometry & Topology. 19 (1): 343–363. arXiv: 1305.0289 . doi:10.2140/gt.2015.19.343. MR   3318753.
  6. Atkinson, Steven; Jiao, Yang; Torquato, Salvatore (10 September 2012). "Maximally dense packings of two-dimensional convex and concave noncircular particles". Physical Review E. 86 (3): 031302. arXiv: 1405.0245 . Bibcode:2012PhRvE..86c1302A. doi:10.1103/physreve.86.031302. PMID   23030907. S2CID   9806947.
  7. Hales, Thomas; Vajjha, Koundinya (7 May 2024). "Packings of Smoothed Polygons". arXiv: 2405.04331 [math.OC].
  8. Barber, Gregory (28 June 2024). "Why Is This Shape So Terrible to Pack?". Quanta Magazine. Retrieved 2024-06-28.
  9. Nazarov, F. L. (1986). "On the Reinhardt problem of lattice packings of convex regions: Local extremality of the Reinhardt octagon". Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta imeni V. A. Steklova Akademii Nauk SSSR (LOMI). 151: 104–114, 197–198. doi:10.1007/BF01727653. MR   0849319.