Sodium cocoate

Last updated

Sodium cocoate is a mixture of fatty acid salts (acid salts) of coconut oil that is used in some soaps. [1]

Fatty acid carboxylic acid with a long aliphatic chain, which is either saturated or unsaturated

In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with a long aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, from 4 to 28. Fatty acids are usually not found in organisms, but instead as three main classes of esters: triglycerides, phospholipids, and cholesterol esters. In any of these forms, fatty acids are both important dietary sources of fuel for animals and they are important structural components for cells.

Acid salts are a class of salts that produce an acidic solution after being dissolved in a solvent. Its formation as a substance has a greater electrical conductivity than that of the pure solvent. An acidic solution formed by acid salt is made during partial neutralization of diprotic or polyprotic acids. A half-neutralization occurs due to the remaining of replaceable hydrogen atoms from the partial dissociation of weak acids that have not been reacted with hydroxide ions (OH) to create water molecules. Acid salt is an ionic compound consisted of an anion, contributed from a weak parent acid, and a cation, contributed from a strong parent base.

Coconut oil edible oil extracted from the kernel or meat of mature coconuts harvested from the coconut palm

Coconut oil, or copra oil, is an edible oil extracted from the kernel or meat of mature coconuts harvested from the coconut palm. It has various applications. Because of its high saturated fat content, it is slow to oxidize and, thus, resistant to rancidification, lasting up to six months at 24 °C (75 °F) without spoiling.

Sodium cocoate is produced by hydrolysis of the ester linkages in coconut oil with sodium hydroxide, a strong base.

Sodium hydroxide chemical compound

Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na+
and hydroxide anions OH
.

Base (chemistry) substance that can accept hydrogen ions (protons) or more generally, donate a pair of valence electrons

In chemistry, bases are substances that, in aqueous solution, release hydroxide (OH) ions, are slippery to the touch, can taste bitter if an alkali, change the color of indicators (e.g., turn red litmus paper blue), react with acids to form salts, promote certain chemical reactions (base catalysis), accept protons from any proton donor or contain completely or partially displaceable OH ions. Examples of bases are the hydroxides of the alkali metals and the alkaline earth metals (NaOH, Ca(OH)2, etc.—see alkali hydroxide and alkaline earth hydroxide).

Related Research Articles

Salt (chemistry) ionic compound

In chemistry, a salt is an ionic compound that can be formed by the neutralization reaction of an acid and a base. Salts are composed of related numbers of cations and anions so that the product is electrically neutral. These component ions can be inorganic, such as chloride (Cl), or organic, such as acetate ; and can be monatomic, such as fluoride (F), or polyatomic, such as sulfate.

Soap sodium salt of fatty acids ( long chain carboxylic acids ), used for washing and cleaning

Soap is the term for a salt of a fatty acid or for a variety of cleansing and lubricating products produced from such a substance. Household uses for soaps include washing, bathing, and other types of housekeeping, where soaps act as surfactants, emulsifying oils to enable them to be carried away by water. In industry, they are used as thickeners, components of some lubricants, and precursors to catalysts.

Saponification is a process that involves conversion of fat or oil into soap and alcohol by the action of heat in the presence of aqueous alkali (e.g. NaOH). Soaps are salts of fatty acids whereas fatty acids are saturated monocarboxylic acids that have long carbon chains (at least 10) e.g. CH3(CH2)14COOH.

The common-ion effect states that in a chemical solution in which several species reversibly associate with each other by an equilibrium process, increasing the concentration of any one of its dissociated components by adding another chemical that also contains it will cause an increased amount of association. This result is a consequence of Le Chatelier's principle for the equilibrium reaction of the association/dissociation. The effect is commonly seen as an effect on the solubility of salts and other weak electrolytes. Adding an additional amount of one of the ions of the salt generally leads to increased precipitation of the salt, which reduces the concentration of both ions of the salt until the solubility equilibrium is reached. The effect is based on the fact that both the original salt and the other added chemical have one ion in common with each other.

Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and other dairy products. Palmitates are the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4).

Niter mineral form of potassium nitrate

Niter, or nitre (chiefly British), is the mineral form of potassium nitrate, KNO3, also known as saltpeter or saltpetre. Historically, the term niter was not well differentiated from natron, both of which have been very vaguely defined but generally refer to compounds of sodium or potassium joined with carbonate or nitrate ions.

Lauric acid or systematically, dodecanoic acid, is a saturated fatty acid with a 12-carbon atom chain, thus having many properties of medium-chain fatty acids, is a bright white, powdery solid with a faint odor of bay oil or soap. The salts and esters of lauric acid are known as laurates.

Resin acid refers to mixtures of several related carboxylic acids, primarily abietic acid, found in tree resins. Nearly all resin acids have the same basic skeleton: three fused rings having the empirical formula C19H29COOH. Resin acids are tacky, yellowish gums that are water-insoluble. They are used to produce soaps for diverse applications, but their use is being displaced increasingly by synthetic acids such as 2-ethylhexanoic acid or petroleum-derived naphthenic acids.

Resin soap is a mix of salts of resin acids. It is a yellow gelatinous pasty soap with use in bleaching and cleaning and as a compound of some varnishes. It also finds use in rubber industry.

Lithium soap, often loosely referred to as "lithium grease" or "white lithium", is a soap that is a lithium derivative. Lithium soaps are primarily used as components of certain lubricant greases.

Bath salts water-soluble, usually inorganic, solid products designed to be added to water during bathing

Bath salts are water-soluble, pulverised minerals that are added to water to be used for bathing. They are said to improve cleaning, enhance the enjoyment of bathing, and serve as a vehicle for cosmetic agents. Bath salts have been developed which mimic the properties of natural mineral baths or hot springs. Some bath salts contain glycerine so the product will act as an emollient, humectant or lubricant. Fragrances and colors are often added to bath salts; the fragrances are used to increase users' enjoyment of the bathing experience.

Phosphate coatings are used on steel parts for corrosion resistance, lubricity, or as a foundation for subsequent coatings or painting. It serves as a conversion coating in which a dilute solution of phosphoric acid and phosphate salts is applied via spraying or immersion and chemically reacts with the surface of the part being coated to form a layer of insoluble, crystalline phosphates. Phosphate conversion coatings can also be used on aluminium, zinc, cadmium, silver and tin.

Oleochemistry is the study of vegetable oils and animal oils and fats, and oleochemicals derived from these fats and oils or from petrochemical feedstocks through physico-chemical modifications or transformation. First used in the making of soaps, oleochemistry is now part of our daily lives where it is found in a wide variety of sectors like food, cosmetics, pharmaceutical and industrial. The resulting product can be called Oleochemicals. They are analogous to petrochemicals derived from petroleum.

Lithium 12-hydroxystearate is a chemical compound classified as a lithium soap. In chemistry, "soap" refers to salts of fatty acids. Lithium 12-hydroxystearate is a white solid. Lithium soaps are key component of many lubricating greases.

Saltwater soap, also called sailors' soap, is a potassium-based soap for use with seawater. Inexpensive common regular commercial soap will not lather or dissolve in seawater due to high levels of sodium chloride in the water. Similarly, common soap does not work as well as potassium-based soap in hard water where calcium replaces the sodium, making residual insoluble "scum" due to the insolubility of the soap residue. To be an effective cleaning agent, soap must be able to dissolve in water.

Sodium salt are salt composed of sodium cation and the conjugate base anion of some inorganic or organic acid. They can be formed by the neutralization of the acid with sodium hydroxide.

Isethionates are esters of long-chain aliphatic carboxylic acids (C8 – C18) with isethionic acid (2-hydroxyethanesulfonic acid) or salts thereof, such as ammonium isethionate or sodium isethionate. They are also referred to as acyl isethionates or acyloxyethanesulfonates.

Tetrasodium iminodisuccinate chemical compound

Tetrasodiumiminodisuccinate is a sodium salt of iminodisuccinic acid, also referred to as N-(1,2-dicarboxyethyl)aspartic acid.

References

  1. R. Marc Dahlgren; et al. "Effects of Bar Soap Constituents on Product Mildness". In A. R. Baldwin. Second World Conference on Detergents. p. 127.

See also